汽車報(bào)料熱線課件_第1頁
汽車報(bào)料熱線課件_第2頁
汽車報(bào)料熱線課件_第3頁
汽車報(bào)料熱線課件_第4頁
汽車報(bào)料熱線課件_第5頁
已閱讀5頁,還剩97頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第六章存貯論【學(xué)習(xí)目標(biāo)】(1)

了解存貯論中存貯問題及其基本概念,進(jìn)一步掌握存貯問題的費(fèi)用概念;(2)

掌握確定性的存貯問題五個(gè)基本模型,利用模型中公式計(jì)算出最優(yōu)經(jīng)濟(jì)批量;(3)

掌握隨機(jī)性的存貯問題兩個(gè)簡(jiǎn)單模型,利用模型中公式計(jì)算出最優(yōu)經(jīng)濟(jì)批量。第六章存貯論【學(xué)習(xí)目標(biāo)】1第一節(jié)存貯問題及其基本概念

一、存貯問題

問題1醫(yī)院血庫的存血問題一方面,為搶救病人,血庫必須儲(chǔ)備一定數(shù)量的血液,血庫存量越多,不僅搶救病人方便,應(yīng)急能力越強(qiáng),而且輸血越多,血庫經(jīng)濟(jì)效益也越好;另—方面,血庫存血要用恒溫箱等醫(yī)療設(shè)備,血存的越多,設(shè)備數(shù)量及為此支付的費(fèi)用就越多,如果存放時(shí)間太長(zhǎng),血液還可能變質(zhì),造成更大損失。可見,血存得多,整體效益未必好。第一節(jié)存貯問題及其基本概念

一、存2一、存貯問題

問題2中成藥的存放問題藥庫存放中成藥的品種數(shù)量越多,醫(yī)生看病開藥方選擇藥物的余地就越大,病人取藥也越方便。但是存貯量大,所占空間也就大,支付的各種費(fèi)用也多,特別是中成藥受溫度,濕度及蟲害影響極易變質(zhì),可能造成更大經(jīng)濟(jì)損失。顯然,存貯量大,綜合效益也未必好。一、存貯問題問題2中成藥的存放問題3一、存貯問題

一方面說明了存貯問題的重要性和普遍性,另方面又說明了存貯問題的復(fù)雜性和多樣性。近年來,隨計(jì)算機(jī)的普及與推廣,存貯論的應(yīng)用也越來越廣泛,已滲透到社會(huì)生活的各個(gè)領(lǐng)域。在衛(wèi)生系統(tǒng),諸如血庫管理、藥品存貯等都有所應(yīng)用。

一、存貯問題

一方面說明了存貯問題的重4二、存貯模型中的基本概念

1.需求

根據(jù)需求的時(shí)間特征.可將需求分為連續(xù)性需求和間斷性需求。在連續(xù)性需求中,隨著時(shí)間的變化,需求連續(xù)地發(fā)生,因而存貯也連續(xù)地減少,在間斷性需求中,需求發(fā)生的時(shí)間極短,可以看作瞬時(shí)發(fā)生,因而存貯的變化是跳躍式地減少。根據(jù)需求的數(shù)量特征,可將需求分為確定性需求和隨機(jī)性需求。在確定性需求中,需求發(fā)生的時(shí)間和數(shù)量是確定的。在隨機(jī)性需求中,需求發(fā)生的時(shí)間或數(shù)量是不確定的。對(duì)于隨機(jī)性需求,要了解需求發(fā)生時(shí)間和數(shù)量的統(tǒng)計(jì)規(guī)律性。二、存貯模型中的基本概念

1.需求5二、存貯模型中的基本概念

2.補(bǔ)充

(a)

開始訂貨到開始補(bǔ)充(開始生產(chǎn)或貨物到達(dá))為止的時(shí)間。這部分時(shí)間如從訂貨后何時(shí)開始補(bǔ)充的角度看,稱為拖后時(shí)間,如從為了按時(shí)補(bǔ)充需要何時(shí)訂貨的角度看,稱為提前時(shí)間。在同一存貯問題中,拖后時(shí)間和提前時(shí)間是一致的,只是觀察的角度不同而已。在實(shí)際存貯問題中,拖后時(shí)間可能很短,以致可以忽略.此時(shí)可以認(rèn)為補(bǔ)充能立即開始,拖后時(shí)間為零。如拖后時(shí)間較長(zhǎng),則它可能是確定性的,也可能是隨機(jī)性的。二、存貯模型中的基本概念2.補(bǔ)充6二、存貯模型中的基本概念

2.補(bǔ)充

(b)開始補(bǔ)充到補(bǔ)充完畢為止的時(shí)間(即入庫或生產(chǎn)時(shí)間)。這部分時(shí)間和拖后時(shí)間一樣,可能很短(因此可以忽略),也可能很長(zhǎng),可能是確定的,也可能是隨機(jī)的。對(duì)存貯問題進(jìn)行研究的目的是給出一個(gè)存貯策略,用以回答在什么情況下需要對(duì)存貯進(jìn)行補(bǔ)充。什么時(shí)間補(bǔ)充,補(bǔ)充多少。一個(gè)存貯策略必須滿足可行性要求,即它所給出的補(bǔ)充方案是可以實(shí)行的,并且能滿足需求的必要條件。二、存貯模型中的基本概念2.補(bǔ)充7二、存貯模型中的基本概念

3.費(fèi)用在存貯論研究中,常以費(fèi)用標(biāo)準(zhǔn)來評(píng)價(jià)和優(yōu)選存貯策略。為了正確地評(píng)價(jià)和優(yōu)選存貯策略,不同存貯策略的費(fèi)用計(jì)算必須符合可比性要求。最重要的可比性要求是時(shí)間可比和計(jì)算口徑可比。

時(shí)間可比是指各存貯策略的費(fèi)用發(fā)生時(shí)間范圍必須一致。實(shí)際計(jì)算時(shí),常用—個(gè)存貯周期內(nèi)的總費(fèi)用或單位時(shí)間平均總費(fèi)用來衡量;

計(jì)算口徑可比是指存貯策略的費(fèi)用統(tǒng)計(jì)項(xiàng)目必須一致。經(jīng)??紤]的費(fèi)用項(xiàng)目有存貯費(fèi)、訂貨費(fèi)、生產(chǎn)費(fèi)、缺貨費(fèi)等。在實(shí)際計(jì)算存貯策略的費(fèi)用時(shí),對(duì)于不同存貯策略都是相同的費(fèi)用可以省略。二、存貯模型中的基本概念3.費(fèi)用8二、存貯模型中的基本概念

3.費(fèi)用

(1)存貯費(fèi):存貯物資資金利息、保險(xiǎn)以及使用倉庫、保管物資、物資損壞變質(zhì)等支出的費(fèi)用,一般和物資存貯數(shù)量及時(shí)間成比例。

(2)訂貨費(fèi):向外采購物資的費(fèi)用。其構(gòu)成有兩類:一類是訂購費(fèi)用,如手續(xù)費(fèi)、差旅費(fèi)等,它與訂貨次數(shù)有關(guān),而和訂貨數(shù)量無關(guān);另—類是物資進(jìn)貨成本,如貸款、運(yùn)費(fèi)等,它與訂貨數(shù)量有關(guān)。二、存貯模型中的基本概念3.費(fèi)用9二、存貯模型中的基本概念

3.費(fèi)用

(3)生產(chǎn)費(fèi):自行生產(chǎn)需存貯物資的費(fèi)用。其構(gòu)成有兩類:一類是裝配費(fèi)用(準(zhǔn)備結(jié)束費(fèi)用),如組織或調(diào)整生產(chǎn)線的有關(guān)費(fèi)用,它同組織生產(chǎn)的次數(shù)有關(guān),而和每次生產(chǎn)的數(shù)量無關(guān);另一類是與生產(chǎn)的數(shù)量有關(guān)的費(fèi)用,如原材料和零配件成本、直接加工費(fèi)等。

(4)缺貨費(fèi):存貯不能滿足需求而造成的損失。如失去銷售機(jī)會(huì)的損失,停工待料的損失,延期交貨的額外支出,對(duì)需方的損失賠償?shù)?。?dāng)不允許缺貨時(shí),可將缺貨費(fèi)作無窮大處理。二、存貯模型中的基本概念3.費(fèi)用10二、存貯模型中的基本概念

4.存貯策略

所謂一個(gè)存貯策略,是指決定什么情況下對(duì)存貯進(jìn)行補(bǔ)充,以及補(bǔ)充數(shù)量的多少。下面是一些比較常見的存貯策略。

(1)t-循環(huán)策略:不論實(shí)際的存貯狀態(tài)如何,總是每隔一個(gè)固定的時(shí)間t,補(bǔ)充一個(gè)固定的存貯量Q。

(2)(t,S)策略:每隔一個(gè)固定的時(shí)間t補(bǔ)充一次,補(bǔ)充數(shù)量以補(bǔ)足一個(gè)固定的最大存貯量S為準(zhǔn)。因此,每次補(bǔ)充的數(shù)量是不固定的,要視實(shí)際存貯量而定。當(dāng)存貯(余額)為I時(shí),補(bǔ)充數(shù)量為Q=S-I。二、存貯模型中的基本概念4.存貯策略11二、存貯模型中的基本概念

4.存貯策略

(3)(s,S)策略:當(dāng)存貯(余額)為I,若I>s,則不對(duì)存貯進(jìn)行補(bǔ)充;若I≤s,則對(duì)存貯進(jìn)行補(bǔ)充,補(bǔ)充數(shù)量Q=S-I。補(bǔ)充后存貯量達(dá)到最大存貯量S。s稱為訂貨點(diǎn)(或保險(xiǎn)存貯量、安全存貯量、警戒點(diǎn)等)。在很多情況下,實(shí)際存貯量需要通過盤點(diǎn)才能得知。若每隔一個(gè)固定的時(shí)間t盤點(diǎn)一次,得知當(dāng)時(shí)存貯I,然后根據(jù)I是否超過訂貨點(diǎn)s,決定是否訂貨、訂貨多少,這樣的策略稱為(t,s,S)策略。二、存貯模型中的基本概念4.存貯策略12二、存貯模型中的基本概念

5.存貯模型

所謂存貯模型,指為控制物資的合理存貯數(shù)量和選擇最佳訂貨時(shí)間或訂貨點(diǎn)而建立的數(shù)學(xué)模型。按變量的類型不同,存貯模型可分為兩類:一類為確定型存貯模型,適用于需求方式為確定性的存貯問題;另一類為隨機(jī)性存貯模型,適用于需求方式為隨機(jī)性的存貯問題。二、存貯模型中的基本概念5.存貯模型13第二節(jié)確定型存貯模型

一、模型一:不允許缺貨,補(bǔ)充時(shí)間極短為了便于描述和分析,對(duì)模型作如下假設(shè):(1)需求是連續(xù)均勻的,即需求速度(單位時(shí)間的需求量)R是常數(shù);(2)補(bǔ)充可以瞬時(shí)實(shí)現(xiàn),即補(bǔ)充時(shí)間(拖后時(shí)間和生產(chǎn)時(shí)間)近似為零;(3)單位存貯費(fèi)(單位時(shí)間內(nèi)單位存貯物的存貯費(fèi)用)為C1。由于不允許缺貨,故單位缺貨費(fèi)(單位時(shí)間內(nèi)每缺少一單位存貯物的損失)C2為無窮大。訂貨費(fèi)(每訂購一次的固定費(fèi)用)為C3。貨物(存貯物)單價(jià)為K.采用t-循環(huán)策略。設(shè)補(bǔ)充間隔時(shí)間為t,補(bǔ)充時(shí)存貯已用盡,每次補(bǔ)充量(訂貨量)為Q,則存貯狀態(tài)圖見圖6-1。第二節(jié)確定型存貯模型

一、模型一14模型一:不允許缺貨,補(bǔ)充時(shí)間極短一次補(bǔ)充量Q必須滿足t時(shí)間內(nèi)的需求,故Q=Rt。因此,訂貨費(fèi)為C3+KRt,而t時(shí)間內(nèi)的平均訂貨費(fèi)為C3/t+KR。由于需求是連續(xù)均圖6-1勻的,故t時(shí)間內(nèi)的平均存貯量為模型一:不允許缺貨,補(bǔ)充時(shí)間極短一次補(bǔ)充量15模型一:不允許缺貨,補(bǔ)充時(shí)間極短t時(shí)間內(nèi)的平均存貯費(fèi)為1/2C1Rt。由于不允許缺貨,故不需考慮缺貨費(fèi)用。所以t時(shí)間內(nèi)的平均總費(fèi)用C(t)隨t的變化而變化,其圖像見圖6-2。當(dāng)t=t*時(shí),C(t*)=C*是C(t)的最小值。為了求得t*,可解模型一:不允許缺貨,補(bǔ)充時(shí)間極短t時(shí)間內(nèi)的平均存16模型一:不允許缺貨,補(bǔ)充時(shí)間極短由于存貯物單價(jià)K和補(bǔ)充量Q無關(guān),它是一常數(shù),因此,存貯物總價(jià)KQ和存貯策略的選擇無關(guān)。所以,為了分析和計(jì)算的方便,在求費(fèi)用函數(shù)C(t)時(shí),常將這一項(xiàng)費(fèi)用略去。略去這一項(xiàng)費(fèi)用后,模型一:不允許缺貨,補(bǔ)充時(shí)間極短由于存貯物單17模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例1某醫(yī)院每月需要某重要藥品400件,每件定價(jià)2000元,不可缺貨。設(shè)每件每月保管費(fèi)為0.1%,每次定購費(fèi)為100元,假設(shè)該藥品的進(jìn)貨可以隨時(shí)實(shí)現(xiàn)。問應(yīng)怎樣組織進(jìn)貨,才能最經(jīng)濟(jì)。

解:K=2000元/件,R=400件/月,Cl=2000·0.1%=2元/件·月,C3=100元/次。模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例1某醫(yī)院18模型一:不允許缺貨,補(bǔ)充時(shí)間極短所以,應(yīng)該每隔15天進(jìn)貨一次,每次進(jìn)貨該藥品200件,能使總費(fèi)用(存貯費(fèi)和訂購費(fèi)之和)為最少400元/月,平均每天約26.67元。若按年計(jì)劃,則每年大約進(jìn)貨12/0.5=24(次),每次進(jìn)貨200件。模型一:不允許缺貨,補(bǔ)充時(shí)間極短所以,應(yīng)該19模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例2

某大醫(yī)院每月消耗青霉素針劑160000盒,每盒每月保管費(fèi)0.2元,不允許缺貨,試比較每次訂貨費(fèi)為1000元或100元兩種情況下的經(jīng)濟(jì)訂貨批量。

解:Cl=0.2元/盒·月,R=160000盒/月。(1)(((模型一:不允許缺貨,補(bǔ)充時(shí)間極短 例2某大醫(yī)20模型一:不允許缺貨,補(bǔ)充時(shí)間極短(2)模型一:不允許缺貨,補(bǔ)充時(shí)間極短21模型一:不允許缺貨,補(bǔ)充時(shí)間極短本例由于訂貨費(fèi)不同,我們采用不同策略,當(dāng)訂貨費(fèi)低時(shí),我們采用多次小批量,可使費(fèi)用達(dá)最優(yōu);當(dāng)訂貨費(fèi)高時(shí),我們采用少次大批量,可使費(fèi)用達(dá)最優(yōu)。模型一:不允許缺貨,補(bǔ)充時(shí)間極短22模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

模型假設(shè)條件:(1)需求是連續(xù)均勻的,即需求速度R為常數(shù);(2)補(bǔ)充需要一定時(shí)間。不考慮拖后時(shí)間,只考慮生產(chǎn)時(shí)間。即一旦需要,生產(chǎn)可立刻開始,但生產(chǎn)需一定周期。設(shè)生產(chǎn)是連續(xù)均勻的,即生產(chǎn)速度P為常數(shù)。同時(shí),設(shè)P>R;(3)單位存貯費(fèi)為C1,單位缺貨費(fèi)為C2,訂購費(fèi)為C3。不考慮貨物價(jià)值。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

模型假設(shè)條件:23模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)存貯狀態(tài)圖見圖6-3。[0,t]為一個(gè)存貯周期,t1時(shí)刻開始生產(chǎn),t3時(shí)刻結(jié)束生產(chǎn);[0,t2]時(shí)間內(nèi)存貯為零,t1時(shí)達(dá)到最大缺貨量B;[t1,t2]時(shí)間內(nèi)產(chǎn)量一方面以速度R滿足需求,另方面以速度(P-R)彌補(bǔ)[0,t1]時(shí)間內(nèi)的缺貨。至t2時(shí)刻缺貨補(bǔ)足;模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)存貯狀態(tài)圖見圖24模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)[t2,t3]時(shí)間內(nèi)產(chǎn)量一方面以速度R滿足需求,另方面以速度(P-R)增加存貯。至t3時(shí)刻達(dá)到最大存貯量A,并停止生產(chǎn);[t3,t]時(shí)間內(nèi)以存貯滿足需求,存貯以速度R減少。至t時(shí)刻存貯降為零,進(jìn)入下一個(gè)存貯周期。下面,根據(jù)模型假設(shè)條件和存貯狀態(tài)圖,首先導(dǎo)出[0,t]時(shí)間內(nèi)的平均總費(fèi)用(即費(fèi)用函數(shù)),然后確定最優(yōu)存貯策略。

模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)[t2,t25模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)從[0,t1]看,最大缺貨量B=Rt1;從[t1,t2]看,最大缺貨量B=(P-R)(t2-t1)。故有Rt1=(P-R)(t2-t1),從中解得:

(6-6)從[t2,t3]看,最大存貯量A=(P-R)(t3-t2):從[t3,t]看,最大存貯量A=R(t-t3)。故有(P-R)(t3-t2)=R(t-t3),從中解得:(6-7)在[0,t]時(shí)間內(nèi),存貯費(fèi)為:缺貨費(fèi)為:模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)從[0,t26模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)故[0,t]時(shí)間內(nèi)平均總費(fèi)用為:將(6-6)和(6-7)代入,整理后得:模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)故[0,t]時(shí)間內(nèi)平均總費(fèi)用為27模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)解方程組容易證明,此時(shí)的費(fèi)用C(t*,t2*)是費(fèi)用函數(shù)C(t,t2)的最小值。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)解方程組28模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)因此,模型二的最優(yōu)存貯策略各參數(shù)值為:最優(yōu)存貯周期

(6-9)經(jīng)濟(jì)生產(chǎn)批量

(6-10)

缺貨補(bǔ)足時(shí)間(6-11)模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)因此,模型二的最優(yōu)29模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間(6-12)結(jié)束生產(chǎn)時(shí)間(6-13)最大存貯量(6-14)最大缺貨量(6-15)平均總費(fèi)用(6-16)模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間30模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)例3某藥廠生產(chǎn)某種藥品,正常生產(chǎn)條件下每天可生產(chǎn)100件。根據(jù)供貨合同,需每天80件供貨。存貯費(fèi)每件每天2元,缺貨費(fèi)每件每天5元,每次生產(chǎn)準(zhǔn)備費(fèi)用(裝配費(fèi))為800元,求最優(yōu)存貯策略。解依題意,符合模型二的條件且P=100件/d,R=80件/d,Cl=2元/d·件,C2=5元/d·件,C3=800元/次。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)例3某藥廠生產(chǎn)某種藥品,正31模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)利用公式(6-9)~(6-16),可得最優(yōu)存貯周期

經(jīng)濟(jì)生產(chǎn)批量缺貨補(bǔ)足時(shí)間模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)利用公式(6-9)~(6-1632模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間結(jié)束生產(chǎn)時(shí)間最大存貯量最大缺貨量平均總費(fèi)用模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間33模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)可以把模型一看作模型二的特殊情況。在模型二中,取消允許缺貨和補(bǔ)充需要一定時(shí)間的條件,即C2→,P→,則模型二就是模型一。事實(shí)上,如將C2→和P→代入模型二的最優(yōu)存貯策略各參數(shù)公式,就可得到模型一的最優(yōu)存貯策略。只是必須注意,按照模型一的假設(shè)條件,應(yīng)有:t1*=t2*=t3*=0A*=Q*B*=0模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)可以把模型一看作模型二的特殊情34模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

在模型二的假設(shè)條件中,取消允許缺貨條件(即設(shè)C2→,t2=0),就成為模型三。因此,模型三的存貯狀態(tài)圖和最優(yōu)存貯策略可以從模型二直接導(dǎo)出。模型三的存貯狀態(tài)圖見圖6-4。模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

在模型二的假設(shè)條件中,取消35最優(yōu)存貯周期經(jīng)濟(jì)生產(chǎn)批量結(jié)束生產(chǎn)時(shí)間最大存貯量平均總費(fèi)用模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

最優(yōu)存貯周期模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

36例4某醫(yī)院2001年每月需用某種針劑10000支,每月購進(jìn)25000支(在邊補(bǔ)充邊消耗期間,訂購后需6天才開始到貨),單位存貯費(fèi)為0.05元/支·月,單位訂購費(fèi)1000元,試求最優(yōu)存貯策略。解:本例特點(diǎn)是補(bǔ)充除需要入庫時(shí)間,還需考慮拖后時(shí)間。因此,訂購時(shí)間應(yīng)在存貯降為零之前的第6天。除此之外,本例和模型三的假設(shè)條件完全一致。本例的存貯狀態(tài)圖見圖6-5。模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

例4某醫(yī)院2001年每月需用某種針劑10000支,每月購37

從圖6-5可見,拖后時(shí)間為[0,t0],存貯量L應(yīng)恰好滿足這段時(shí)間的需求,故L=Rt0由題意知P=25000支/月R=10000支/月Cl=0.05元/支·月C3=1000元/次t0=6天,L=100006/30=2000支。代入式(6-17)~(6-21)可算得:最優(yōu)存貯周期模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

從圖6-5可見,拖后時(shí)間為[0,t0],存貯量L應(yīng)恰好滿足38模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

經(jīng)濟(jì)生產(chǎn)批量結(jié)束生產(chǎn)時(shí)間最大存貯量平均總費(fèi)用模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

經(jīng)濟(jì)生產(chǎn)批量39模型四:允許缺貨,補(bǔ)充時(shí)間極短

在模型二的假設(shè)條件中,取消補(bǔ)充需要一定時(shí)間的條件(即設(shè)P→),就成為模型四。因此,和模型三一樣,模型四的存貯狀態(tài)圖和最優(yōu)存貯策略也可以從模型二中直接導(dǎo)出。模型四的存貯狀態(tài)圖見圖6-6。最優(yōu)存貯策略各參數(shù):最優(yōu)存貯周期

模型四:允許缺貨,補(bǔ)充時(shí)間極短

在模型二的假設(shè)條件中,取消補(bǔ)40經(jīng)濟(jì)生產(chǎn)批量生產(chǎn)時(shí)間最大存貯量最大缺貨量平均總費(fèi)用模型四:允許缺貨,補(bǔ)充時(shí)間極短

經(jīng)濟(jì)生產(chǎn)批量模型四:允許缺貨,補(bǔ)充時(shí)間極短

41例5假設(shè)某醫(yī)院每年均勻地耗用A種衛(wèi)生材料24000單位(允許缺貨,瞬時(shí)補(bǔ)充)。已知每單位A材料每月存貯費(fèi)0.1元,每采購一次該材料需采購費(fèi)350元,單位缺貨費(fèi)為0.2元/單位·月,試求最優(yōu)存貯策略。解:由題意知:R=24000/12=2000單位Cl=0.1元/單位·月C2=0.2元/單位·月C3=350元/次,可算得:最優(yōu)存貯周期

經(jīng)濟(jì)生產(chǎn)批量

模型四:允許缺貨,補(bǔ)充時(shí)間極短

例5假設(shè)某醫(yī)院每年均勻地耗用A種衛(wèi)生材料24000單位(42生產(chǎn)時(shí)間最大存貯量最大缺貨量平均總費(fèi)用模型四:允許缺貨,補(bǔ)充時(shí)間極短

生產(chǎn)時(shí)間模型四:允許缺貨,補(bǔ)充時(shí)間極短

43對(duì)于確定型存貯問題,上述四個(gè)模型是最基本的模型。其中,模型一、三,四又可看作模型二的特殊情況。在每個(gè)模型的最優(yōu)存貯策略的各個(gè)參數(shù)中,最優(yōu)存貯周期t*是最基本的參數(shù),其它各個(gè)參數(shù)和它的關(guān)系在各個(gè)模型中都是相同的。根據(jù)模型假設(shè)條件的不同,各個(gè)模型的最優(yōu)存貯周期t*之間也有明顯的規(guī)律性。因子對(duì)應(yīng)了是否允許缺貨的假設(shè)條件,因子對(duì)應(yīng)了補(bǔ)充是否需要時(shí)間的假設(shè)條件。

模型四:允許缺貨,補(bǔ)充時(shí)間極短

對(duì)于確定型存貯問題,上述四個(gè)模型是最基本的44

一個(gè)存貯問題是否允許缺貨或補(bǔ)充是否需要時(shí)間,完全取決于對(duì)實(shí)際問題的處理角度,不存在絕對(duì)意義上的不允許缺貨或絕對(duì)意義上的補(bǔ)充不需要時(shí)間。如果缺貨引起的后果或損失十分嚴(yán)重,則從管理的角度應(yīng)當(dāng)提出不允許缺貨的建模要求;否則,可視為允許缺貨的情況。至于缺貨損失的估計(jì),應(yīng)當(dāng)力求全面和精確。如果補(bǔ)充需要的時(shí)間相對(duì)于存貯周期是微不足道的,則可考慮補(bǔ)充不需要時(shí)間的假設(shè)條件;否則,需要考慮補(bǔ)充時(shí)間。在考慮補(bǔ)充時(shí)間時(shí),必須分清拖后時(shí)間和生產(chǎn)時(shí)間,兩者在概念上是不同的。一個(gè)存貯問題是否允許缺貨或補(bǔ)充是否需要時(shí)間45為了鼓勵(lì)大批量訂貨,供方常對(duì)需方實(shí)行價(jià)格優(yōu)惠。訂貨批量越大,貨物價(jià)格就越便宜。模型五除含有這樣的價(jià)格刺激機(jī)制外,其它假設(shè)條件和模型一相同。一般地,設(shè)訂貨批量為Q,對(duì)應(yīng)的貨物單價(jià)為K(Q)。當(dāng)Qi-1≤Q<Qi,時(shí),K(Q)=Ki(i=1,2,…,n)。其中,Qi為價(jià)格折扣的某個(gè)分界點(diǎn),且0≤Q0<Ql<Q2<…<Qn,K1>K2>…>Kn。由式(6-1),在一個(gè)存貯周期內(nèi)模型五的平均總費(fèi)用(費(fèi)用函數(shù))為:其中,Q=Rt。當(dāng)Qi-1≤Q=Rt<Qi時(shí),K(Q)=Kii=1,2,…,nC(t)為關(guān)于t的分段函數(shù)。為了了解它的性質(zhì),以n=3為例,畫出其圖象,見圖6-7。模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

為了鼓勵(lì)大批量訂貨,供方常對(duì)需方實(shí)行價(jià)格優(yōu)惠46

模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

47(1)計(jì)算。若,則平均總費(fèi)用:(2)計(jì)算(3)若,則C*對(duì)應(yīng)的批量為最小費(fèi)用訂購批量Q*。相應(yīng)地,和最小費(fèi)用C*對(duì)應(yīng)的訂購周期t*=Q*/R。模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

(1)計(jì)算48例6醫(yī)院每周需打印紙45箱,存貯費(fèi)每箱每周5元,每次訂購費(fèi)50元,不允許缺貨。打印紙進(jìn)貨時(shí)若(1)訂貨量1箱~9箱時(shí),每箱120元;(2)訂貨量10箱~49箱時(shí),每箱100元;(3)訂貨量50箱~99箱時(shí),每箱95元;(4)訂貨量99箱以上時(shí),每箱90元。求最優(yōu)存貯策略。解R=45箱/周,C1=5元/周,C3=50元/次Q0=0,Ql=1,Q2=10,Q3=50,Q4=100K1=120,K2=100,K3=95,K4=90模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

例6醫(yī)院每周需打印紙45箱,存貯費(fèi)每箱每周5元,每次訂購49模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

因在10~49之間,故每箱價(jià)格為K2=100元,平均總費(fèi)用又因

min{4650,4445,4322.5}=4322.5(元/周)=C(4)故最優(yōu)訂購批量Q*=100箱,最小費(fèi)用C*=4322.5元/周,訂購周期t*=Q*/R=100/45≈2.22周≈16天。模型五:價(jià)格與訂貨批量有關(guān)的存貯模型

因50演講完畢,謝謝觀看!演講完畢,謝謝觀看!51第六章存貯論【學(xué)習(xí)目標(biāo)】(1)

了解存貯論中存貯問題及其基本概念,進(jìn)一步掌握存貯問題的費(fèi)用概念;(2)

掌握確定性的存貯問題五個(gè)基本模型,利用模型中公式計(jì)算出最優(yōu)經(jīng)濟(jì)批量;(3)

掌握隨機(jī)性的存貯問題兩個(gè)簡(jiǎn)單模型,利用模型中公式計(jì)算出最優(yōu)經(jīng)濟(jì)批量。第六章存貯論【學(xué)習(xí)目標(biāo)】52第一節(jié)存貯問題及其基本概念

一、存貯問題

問題1醫(yī)院血庫的存血問題一方面,為搶救病人,血庫必須儲(chǔ)備一定數(shù)量的血液,血庫存量越多,不僅搶救病人方便,應(yīng)急能力越強(qiáng),而且輸血越多,血庫經(jīng)濟(jì)效益也越好;另—方面,血庫存血要用恒溫箱等醫(yī)療設(shè)備,血存的越多,設(shè)備數(shù)量及為此支付的費(fèi)用就越多,如果存放時(shí)間太長(zhǎng),血液還可能變質(zhì),造成更大損失??梢?,血存得多,整體效益未必好。第一節(jié)存貯問題及其基本概念

一、存53一、存貯問題

問題2中成藥的存放問題藥庫存放中成藥的品種數(shù)量越多,醫(yī)生看病開藥方選擇藥物的余地就越大,病人取藥也越方便。但是存貯量大,所占空間也就大,支付的各種費(fèi)用也多,特別是中成藥受溫度,濕度及蟲害影響極易變質(zhì),可能造成更大經(jīng)濟(jì)損失。顯然,存貯量大,綜合效益也未必好。一、存貯問題問題2中成藥的存放問題54一、存貯問題

一方面說明了存貯問題的重要性和普遍性,另方面又說明了存貯問題的復(fù)雜性和多樣性。近年來,隨計(jì)算機(jī)的普及與推廣,存貯論的應(yīng)用也越來越廣泛,已滲透到社會(huì)生活的各個(gè)領(lǐng)域。在衛(wèi)生系統(tǒng),諸如血庫管理、藥品存貯等都有所應(yīng)用。

一、存貯問題

一方面說明了存貯問題的重55二、存貯模型中的基本概念

1.需求

根據(jù)需求的時(shí)間特征.可將需求分為連續(xù)性需求和間斷性需求。在連續(xù)性需求中,隨著時(shí)間的變化,需求連續(xù)地發(fā)生,因而存貯也連續(xù)地減少,在間斷性需求中,需求發(fā)生的時(shí)間極短,可以看作瞬時(shí)發(fā)生,因而存貯的變化是跳躍式地減少。根據(jù)需求的數(shù)量特征,可將需求分為確定性需求和隨機(jī)性需求。在確定性需求中,需求發(fā)生的時(shí)間和數(shù)量是確定的。在隨機(jī)性需求中,需求發(fā)生的時(shí)間或數(shù)量是不確定的。對(duì)于隨機(jī)性需求,要了解需求發(fā)生時(shí)間和數(shù)量的統(tǒng)計(jì)規(guī)律性。二、存貯模型中的基本概念

1.需求56二、存貯模型中的基本概念

2.補(bǔ)充

(a)

開始訂貨到開始補(bǔ)充(開始生產(chǎn)或貨物到達(dá))為止的時(shí)間。這部分時(shí)間如從訂貨后何時(shí)開始補(bǔ)充的角度看,稱為拖后時(shí)間,如從為了按時(shí)補(bǔ)充需要何時(shí)訂貨的角度看,稱為提前時(shí)間。在同一存貯問題中,拖后時(shí)間和提前時(shí)間是一致的,只是觀察的角度不同而已。在實(shí)際存貯問題中,拖后時(shí)間可能很短,以致可以忽略.此時(shí)可以認(rèn)為補(bǔ)充能立即開始,拖后時(shí)間為零。如拖后時(shí)間較長(zhǎng),則它可能是確定性的,也可能是隨機(jī)性的。二、存貯模型中的基本概念2.補(bǔ)充57二、存貯模型中的基本概念

2.補(bǔ)充

(b)開始補(bǔ)充到補(bǔ)充完畢為止的時(shí)間(即入庫或生產(chǎn)時(shí)間)。這部分時(shí)間和拖后時(shí)間一樣,可能很短(因此可以忽略),也可能很長(zhǎng),可能是確定的,也可能是隨機(jī)的。對(duì)存貯問題進(jìn)行研究的目的是給出一個(gè)存貯策略,用以回答在什么情況下需要對(duì)存貯進(jìn)行補(bǔ)充。什么時(shí)間補(bǔ)充,補(bǔ)充多少。一個(gè)存貯策略必須滿足可行性要求,即它所給出的補(bǔ)充方案是可以實(shí)行的,并且能滿足需求的必要條件。二、存貯模型中的基本概念2.補(bǔ)充58二、存貯模型中的基本概念

3.費(fèi)用在存貯論研究中,常以費(fèi)用標(biāo)準(zhǔn)來評(píng)價(jià)和優(yōu)選存貯策略。為了正確地評(píng)價(jià)和優(yōu)選存貯策略,不同存貯策略的費(fèi)用計(jì)算必須符合可比性要求。最重要的可比性要求是時(shí)間可比和計(jì)算口徑可比。

時(shí)間可比是指各存貯策略的費(fèi)用發(fā)生時(shí)間范圍必須一致。實(shí)際計(jì)算時(shí),常用—個(gè)存貯周期內(nèi)的總費(fèi)用或單位時(shí)間平均總費(fèi)用來衡量;

計(jì)算口徑可比是指存貯策略的費(fèi)用統(tǒng)計(jì)項(xiàng)目必須一致。經(jīng)??紤]的費(fèi)用項(xiàng)目有存貯費(fèi)、訂貨費(fèi)、生產(chǎn)費(fèi)、缺貨費(fèi)等。在實(shí)際計(jì)算存貯策略的費(fèi)用時(shí),對(duì)于不同存貯策略都是相同的費(fèi)用可以省略。二、存貯模型中的基本概念3.費(fèi)用59二、存貯模型中的基本概念

3.費(fèi)用

(1)存貯費(fèi):存貯物資資金利息、保險(xiǎn)以及使用倉庫、保管物資、物資損壞變質(zhì)等支出的費(fèi)用,一般和物資存貯數(shù)量及時(shí)間成比例。

(2)訂貨費(fèi):向外采購物資的費(fèi)用。其構(gòu)成有兩類:一類是訂購費(fèi)用,如手續(xù)費(fèi)、差旅費(fèi)等,它與訂貨次數(shù)有關(guān),而和訂貨數(shù)量無關(guān);另—類是物資進(jìn)貨成本,如貸款、運(yùn)費(fèi)等,它與訂貨數(shù)量有關(guān)。二、存貯模型中的基本概念3.費(fèi)用60二、存貯模型中的基本概念

3.費(fèi)用

(3)生產(chǎn)費(fèi):自行生產(chǎn)需存貯物資的費(fèi)用。其構(gòu)成有兩類:一類是裝配費(fèi)用(準(zhǔn)備結(jié)束費(fèi)用),如組織或調(diào)整生產(chǎn)線的有關(guān)費(fèi)用,它同組織生產(chǎn)的次數(shù)有關(guān),而和每次生產(chǎn)的數(shù)量無關(guān);另一類是與生產(chǎn)的數(shù)量有關(guān)的費(fèi)用,如原材料和零配件成本、直接加工費(fèi)等。

(4)缺貨費(fèi):存貯不能滿足需求而造成的損失。如失去銷售機(jī)會(huì)的損失,停工待料的損失,延期交貨的額外支出,對(duì)需方的損失賠償?shù)?。?dāng)不允許缺貨時(shí),可將缺貨費(fèi)作無窮大處理。二、存貯模型中的基本概念3.費(fèi)用61二、存貯模型中的基本概念

4.存貯策略

所謂一個(gè)存貯策略,是指決定什么情況下對(duì)存貯進(jìn)行補(bǔ)充,以及補(bǔ)充數(shù)量的多少。下面是一些比較常見的存貯策略。

(1)t-循環(huán)策略:不論實(shí)際的存貯狀態(tài)如何,總是每隔一個(gè)固定的時(shí)間t,補(bǔ)充一個(gè)固定的存貯量Q。

(2)(t,S)策略:每隔一個(gè)固定的時(shí)間t補(bǔ)充一次,補(bǔ)充數(shù)量以補(bǔ)足一個(gè)固定的最大存貯量S為準(zhǔn)。因此,每次補(bǔ)充的數(shù)量是不固定的,要視實(shí)際存貯量而定。當(dāng)存貯(余額)為I時(shí),補(bǔ)充數(shù)量為Q=S-I。二、存貯模型中的基本概念4.存貯策略62二、存貯模型中的基本概念

4.存貯策略

(3)(s,S)策略:當(dāng)存貯(余額)為I,若I>s,則不對(duì)存貯進(jìn)行補(bǔ)充;若I≤s,則對(duì)存貯進(jìn)行補(bǔ)充,補(bǔ)充數(shù)量Q=S-I。補(bǔ)充后存貯量達(dá)到最大存貯量S。s稱為訂貨點(diǎn)(或保險(xiǎn)存貯量、安全存貯量、警戒點(diǎn)等)。在很多情況下,實(shí)際存貯量需要通過盤點(diǎn)才能得知。若每隔一個(gè)固定的時(shí)間t盤點(diǎn)一次,得知當(dāng)時(shí)存貯I,然后根據(jù)I是否超過訂貨點(diǎn)s,決定是否訂貨、訂貨多少,這樣的策略稱為(t,s,S)策略。二、存貯模型中的基本概念4.存貯策略63二、存貯模型中的基本概念

5.存貯模型

所謂存貯模型,指為控制物資的合理存貯數(shù)量和選擇最佳訂貨時(shí)間或訂貨點(diǎn)而建立的數(shù)學(xué)模型。按變量的類型不同,存貯模型可分為兩類:一類為確定型存貯模型,適用于需求方式為確定性的存貯問題;另一類為隨機(jī)性存貯模型,適用于需求方式為隨機(jī)性的存貯問題。二、存貯模型中的基本概念5.存貯模型64第二節(jié)確定型存貯模型

一、模型一:不允許缺貨,補(bǔ)充時(shí)間極短為了便于描述和分析,對(duì)模型作如下假設(shè):(1)需求是連續(xù)均勻的,即需求速度(單位時(shí)間的需求量)R是常數(shù);(2)補(bǔ)充可以瞬時(shí)實(shí)現(xiàn),即補(bǔ)充時(shí)間(拖后時(shí)間和生產(chǎn)時(shí)間)近似為零;(3)單位存貯費(fèi)(單位時(shí)間內(nèi)單位存貯物的存貯費(fèi)用)為C1。由于不允許缺貨,故單位缺貨費(fèi)(單位時(shí)間內(nèi)每缺少一單位存貯物的損失)C2為無窮大。訂貨費(fèi)(每訂購一次的固定費(fèi)用)為C3。貨物(存貯物)單價(jià)為K.采用t-循環(huán)策略。設(shè)補(bǔ)充間隔時(shí)間為t,補(bǔ)充時(shí)存貯已用盡,每次補(bǔ)充量(訂貨量)為Q,則存貯狀態(tài)圖見圖6-1。第二節(jié)確定型存貯模型

一、模型一65模型一:不允許缺貨,補(bǔ)充時(shí)間極短一次補(bǔ)充量Q必須滿足t時(shí)間內(nèi)的需求,故Q=Rt。因此,訂貨費(fèi)為C3+KRt,而t時(shí)間內(nèi)的平均訂貨費(fèi)為C3/t+KR。由于需求是連續(xù)均圖6-1勻的,故t時(shí)間內(nèi)的平均存貯量為模型一:不允許缺貨,補(bǔ)充時(shí)間極短一次補(bǔ)充量66模型一:不允許缺貨,補(bǔ)充時(shí)間極短t時(shí)間內(nèi)的平均存貯費(fèi)為1/2C1Rt。由于不允許缺貨,故不需考慮缺貨費(fèi)用。所以t時(shí)間內(nèi)的平均總費(fèi)用C(t)隨t的變化而變化,其圖像見圖6-2。當(dāng)t=t*時(shí),C(t*)=C*是C(t)的最小值。為了求得t*,可解模型一:不允許缺貨,補(bǔ)充時(shí)間極短t時(shí)間內(nèi)的平均存67模型一:不允許缺貨,補(bǔ)充時(shí)間極短由于存貯物單價(jià)K和補(bǔ)充量Q無關(guān),它是一常數(shù),因此,存貯物總價(jià)KQ和存貯策略的選擇無關(guān)。所以,為了分析和計(jì)算的方便,在求費(fèi)用函數(shù)C(t)時(shí),常將這一項(xiàng)費(fèi)用略去。略去這一項(xiàng)費(fèi)用后,模型一:不允許缺貨,補(bǔ)充時(shí)間極短由于存貯物單68模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例1某醫(yī)院每月需要某重要藥品400件,每件定價(jià)2000元,不可缺貨。設(shè)每件每月保管費(fèi)為0.1%,每次定購費(fèi)為100元,假設(shè)該藥品的進(jìn)貨可以隨時(shí)實(shí)現(xiàn)。問應(yīng)怎樣組織進(jìn)貨,才能最經(jīng)濟(jì)。

解:K=2000元/件,R=400件/月,Cl=2000·0.1%=2元/件·月,C3=100元/次。模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例1某醫(yī)院69模型一:不允許缺貨,補(bǔ)充時(shí)間極短所以,應(yīng)該每隔15天進(jìn)貨一次,每次進(jìn)貨該藥品200件,能使總費(fèi)用(存貯費(fèi)和訂購費(fèi)之和)為最少400元/月,平均每天約26.67元。若按年計(jì)劃,則每年大約進(jìn)貨12/0.5=24(次),每次進(jìn)貨200件。模型一:不允許缺貨,補(bǔ)充時(shí)間極短所以,應(yīng)該70模型一:不允許缺貨,補(bǔ)充時(shí)間極短

例2

某大醫(yī)院每月消耗青霉素針劑160000盒,每盒每月保管費(fèi)0.2元,不允許缺貨,試比較每次訂貨費(fèi)為1000元或100元兩種情況下的經(jīng)濟(jì)訂貨批量。

解:Cl=0.2元/盒·月,R=160000盒/月。(1)(((模型一:不允許缺貨,補(bǔ)充時(shí)間極短 例2某大醫(yī)71模型一:不允許缺貨,補(bǔ)充時(shí)間極短(2)模型一:不允許缺貨,補(bǔ)充時(shí)間極短72模型一:不允許缺貨,補(bǔ)充時(shí)間極短本例由于訂貨費(fèi)不同,我們采用不同策略,當(dāng)訂貨費(fèi)低時(shí),我們采用多次小批量,可使費(fèi)用達(dá)最優(yōu);當(dāng)訂貨費(fèi)高時(shí),我們采用少次大批量,可使費(fèi)用達(dá)最優(yōu)。模型一:不允許缺貨,補(bǔ)充時(shí)間極短73模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

模型假設(shè)條件:(1)需求是連續(xù)均勻的,即需求速度R為常數(shù);(2)補(bǔ)充需要一定時(shí)間。不考慮拖后時(shí)間,只考慮生產(chǎn)時(shí)間。即一旦需要,生產(chǎn)可立刻開始,但生產(chǎn)需一定周期。設(shè)生產(chǎn)是連續(xù)均勻的,即生產(chǎn)速度P為常數(shù)。同時(shí),設(shè)P>R;(3)單位存貯費(fèi)為C1,單位缺貨費(fèi)為C2,訂購費(fèi)為C3。不考慮貨物價(jià)值。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

模型假設(shè)條件:74模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)存貯狀態(tài)圖見圖6-3。[0,t]為一個(gè)存貯周期,t1時(shí)刻開始生產(chǎn),t3時(shí)刻結(jié)束生產(chǎn);[0,t2]時(shí)間內(nèi)存貯為零,t1時(shí)達(dá)到最大缺貨量B;[t1,t2]時(shí)間內(nèi)產(chǎn)量一方面以速度R滿足需求,另方面以速度(P-R)彌補(bǔ)[0,t1]時(shí)間內(nèi)的缺貨。至t2時(shí)刻缺貨補(bǔ)足;模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)存貯狀態(tài)圖見圖75模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)[t2,t3]時(shí)間內(nèi)產(chǎn)量一方面以速度R滿足需求,另方面以速度(P-R)增加存貯。至t3時(shí)刻達(dá)到最大存貯量A,并停止生產(chǎn);[t3,t]時(shí)間內(nèi)以存貯滿足需求,存貯以速度R減少。至t時(shí)刻存貯降為零,進(jìn)入下一個(gè)存貯周期。下面,根據(jù)模型假設(shè)條件和存貯狀態(tài)圖,首先導(dǎo)出[0,t]時(shí)間內(nèi)的平均總費(fèi)用(即費(fèi)用函數(shù)),然后確定最優(yōu)存貯策略。

模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)[t2,t76模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)從[0,t1]看,最大缺貨量B=Rt1;從[t1,t2]看,最大缺貨量B=(P-R)(t2-t1)。故有Rt1=(P-R)(t2-t1),從中解得:

(6-6)從[t2,t3]看,最大存貯量A=(P-R)(t3-t2):從[t3,t]看,最大存貯量A=R(t-t3)。故有(P-R)(t3-t2)=R(t-t3),從中解得:(6-7)在[0,t]時(shí)間內(nèi),存貯費(fèi)為:缺貨費(fèi)為:模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)從[0,t77模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)故[0,t]時(shí)間內(nèi)平均總費(fèi)用為:將(6-6)和(6-7)代入,整理后得:模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)故[0,t]時(shí)間內(nèi)平均總費(fèi)用為78模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)解方程組容易證明,此時(shí)的費(fèi)用C(t*,t2*)是費(fèi)用函數(shù)C(t,t2)的最小值。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)解方程組79模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)因此,模型二的最優(yōu)存貯策略各參數(shù)值為:最優(yōu)存貯周期

(6-9)經(jīng)濟(jì)生產(chǎn)批量

(6-10)

缺貨補(bǔ)足時(shí)間(6-11)模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)因此,模型二的最優(yōu)80模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間(6-12)結(jié)束生產(chǎn)時(shí)間(6-13)最大存貯量(6-14)最大缺貨量(6-15)平均總費(fèi)用(6-16)模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間81模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)例3某藥廠生產(chǎn)某種藥品,正常生產(chǎn)條件下每天可生產(chǎn)100件。根據(jù)供貨合同,需每天80件供貨。存貯費(fèi)每件每天2元,缺貨費(fèi)每件每天5元,每次生產(chǎn)準(zhǔn)備費(fèi)用(裝配費(fèi))為800元,求最優(yōu)存貯策略。解依題意,符合模型二的條件且P=100件/d,R=80件/d,Cl=2元/d·件,C2=5元/d·件,C3=800元/次。模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)例3某藥廠生產(chǎn)某種藥品,正82模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)利用公式(6-9)~(6-16),可得最優(yōu)存貯周期

經(jīng)濟(jì)生產(chǎn)批量缺貨補(bǔ)足時(shí)間模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)利用公式(6-9)~(6-1683模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間結(jié)束生產(chǎn)時(shí)間最大存貯量最大缺貨量平均總費(fèi)用模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)開始生產(chǎn)時(shí)間84模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)可以把模型一看作模型二的特殊情況。在模型二中,取消允許缺貨和補(bǔ)充需要一定時(shí)間的條件,即C2→,P→,則模型二就是模型一。事實(shí)上,如將C2→和P→代入模型二的最優(yōu)存貯策略各參數(shù)公式,就可得到模型一的最優(yōu)存貯策略。只是必須注意,按照模型一的假設(shè)條件,應(yīng)有:t1*=t2*=t3*=0A*=Q*B*=0模型二:允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)可以把模型一看作模型二的特殊情85模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

在模型二的假設(shè)條件中,取消允許缺貨條件(即設(shè)C2→,t2=0),就成為模型三。因此,模型三的存貯狀態(tài)圖和最優(yōu)存貯策略可以從模型二直接導(dǎo)出。模型三的存貯狀態(tài)圖見圖6-4。模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

在模型二的假設(shè)條件中,取消86最優(yōu)存貯周期經(jīng)濟(jì)生產(chǎn)批量結(jié)束生產(chǎn)時(shí)間最大存貯量平均總費(fèi)用模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

最優(yōu)存貯周期模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

87例4某醫(yī)院2001年每月需用某種針劑10000支,每月購進(jìn)25000支(在邊補(bǔ)充邊消耗期間,訂購后需6天才開始到貨),單位存貯費(fèi)為0.05元/支·月,單位訂購費(fèi)1000元,試求最優(yōu)存貯策略。解:本例特點(diǎn)是補(bǔ)充除需要入庫時(shí)間,還需考慮拖后時(shí)間。因此,訂購時(shí)間應(yīng)在存貯降為零之前的第6天。除此之外,本例和模型三的假設(shè)條件完全一致。本例的存貯狀態(tài)圖見圖6-5。模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

例4某醫(yī)院2001年每月需用某種針劑10000支,每月購88

從圖6-5可見,拖后時(shí)間為[0,t0],存貯量L應(yīng)恰好滿足這段時(shí)間的需求,故L=Rt0由題意知P=25000支/月R=10000支/月Cl=0.05元/支·月C3=1000元/次t0=6天,L=100006/30=2000支。代入式(6-17)~(6-21)可算得:最優(yōu)存貯周期模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

從圖6-5可見,拖后時(shí)間為[0,t0],存貯量L應(yīng)恰好滿足89模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

經(jīng)濟(jì)生產(chǎn)批量結(jié)束生產(chǎn)時(shí)間最大存貯量平均總費(fèi)用模型三:不允許缺貨,補(bǔ)充時(shí)間較長(zhǎng)

經(jīng)濟(jì)生產(chǎn)批量90模型四:允許缺貨,補(bǔ)充時(shí)間極短

在模型二的假設(shè)條件中,取消補(bǔ)充需要一定時(shí)間的條件(即設(shè)P→),就成為模型四。因此,和模型三一樣,模型四的存貯狀態(tài)圖和最優(yōu)存貯策略也可以從模型二中直接導(dǎo)出。模型四的存貯狀態(tài)圖見圖6-6。最優(yōu)存貯策略各參數(shù):最優(yōu)存貯周期

模型四:允許缺貨,補(bǔ)充時(shí)間極短

在模型二的假設(shè)條件中,取消補(bǔ)91經(jīng)濟(jì)生產(chǎn)批量生產(chǎn)時(shí)間最大存貯量最大缺貨量平均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論