版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、解答題:在數(shù)列{a}中,a=1,a=2a+2n.TOC\o"1-5"\h\zn1n+1n設(shè)b=2"n-,證明:數(shù)列{b}是等差數(shù)列;n2n-1n仃I)求數(shù)列{a}的前n項(xiàng)的和S.nn【答案】aaa—2a2n因?yàn)閎丄一b=丁一廠==7=1n+1n2n2n-12n2n所以數(shù)列{b}為等差數(shù)列n仃I)因?yàn)閎=b+(n—1)X1=nn1所以a=n?2n-in所以S=1X2o+2X2】+…+nX2n-in2S=1X2】+2X22+???+nX2nn兩式相減得S=(n—1)?2n+1n在數(shù)列{a}中,a=2,a丄=£a+占.n12n+12n2n+1(I)設(shè)b=2na,證明:數(shù)列{b}是等差數(shù)列;nnn仃I)求數(shù)列{a}的前n項(xiàng)和S.nn【答案】/、亠11(I)由春1=2an+2",得2n+1a=2na+1b=b+1,n+1nn+1n
則{b}是首項(xiàng)b=1,公差為1的等差數(shù)列.n1故匕=山a=2.nn2n仃I)S=1xg+2x£+3X右(n—1)X,+nX右n222232n-12n2Sn=1X^+2X^+3X^+^+(n—1)X^+nX^兩式相減,得:=2+繪+…+2=2+繪+…+2:—2n+ln12+1=1—久n2n+1S=2—n12n—1n2n=(a=(a+1)2(nwN*).n+2a—2a1nn—1數(shù)列{a}的各項(xiàng)均為正數(shù),前n項(xiàng)和為S,且滿足4STOC\o"1-5"\h\znnn(I)證明:數(shù)列{a}是等差數(shù)列,并求出其通項(xiàng)公式a;nn仃I)設(shè)b=a+2a(n^N*),求數(shù)列{b}的前n項(xiàng)和T.nnnnn【答案】n=1時(shí),48]=(8]+1)20&2—28]+1=0,即a〔=1n三2時(shí),4a=4S—4S=(a+1)2—(a+1)2=a2—a2nnn—1nn—1nn—na2—a2—2a—2a=0nn—1nn—1n(a+a)[(a—a)—2]=0nn—1nn—1*/a>0.*?a—a=2nnn—1故數(shù)列{a}是首項(xiàng)為a=l,公差為d=2的等差數(shù)列,且a=2n—l(n^N*)TOC\o"1-5"\h\zn1n仃I)由(I)知b=a+2a=(2n—1)+22n-innnT=b+b+…+bn12n=(l+2i)+(3+23)+???+[(2n—1)+22]n—1=[1+3——(2n—1)]+(21+23——22n—i)2(1—22n)22n+1222口+1十3口2—2=n2+=+n2—■=■TOC\o"1-5"\h\z21—43233數(shù)列{a}的各項(xiàng)均為正數(shù),前n項(xiàng)和為S,且滿足2寸S=a+l(n^N*).nnRnn(I)證明:數(shù)列{a}是等差數(shù)列,并求出其通項(xiàng)公式a;nn仃I)設(shè)b=a?2n(nWN*),求數(shù)列{b}的前n項(xiàng)和T.nnnn【答案】由2\S=a+1(nGN*)可以得到4S=(a+1)2(nGN*)nnnnn=l時(shí),4a=(a+l)2Oa2—2a+1=0,即a=l11111n22時(shí),4a=4S—4S=(a+1)2—(a+1)2nnn—1nn—1=a2—a2+2a—2ann—1nn—1aa2—a2—2a—2a=0nn—1nn—1a(a+a)[(a—a)—2]=0nn—1nn—1*/a>0.*?a—a=2nnn—1故數(shù)列{a}是首項(xiàng)為a=1,公差為d=2的等差數(shù)列,且n1a=2n—l(nWN*)n由(I)知b=a?2n=(2n—l)?2nnn?:T=(l?2i)+(3?22)+…+[(2n—3)?2n-i]+[(2n—l)?2n]n則2T=(1?22)+(3?23)——[(2n—3)?2n]+[(2n—l)?2n+i]n兩式相減得:—T=(1?2i)+(2?22)——(2?2n)—[(2n—l)?2n+i]n2(1—2n)r/\=2?—2—[(2n—])?2n+i]1—2=(3—2n)?2n+i—6.??T=(2n—3)?2n+1+6(或T=(4n—6)?2“+6)nn37已知數(shù)列{a},其前n項(xiàng)和為S=-n2+-n(nGN*)?nn22求a,a;12仃I)求數(shù)列{a}的通項(xiàng)公式,并證明數(shù)列{a}是等差數(shù)列;nn如果數(shù)列{b}滿足a=logb,請證明數(shù)列{b}是等比數(shù)列,并求其前n項(xiàng)和T.2【答案】(I)a=S=5,,c3,7a+a=S=~X22+;X2=13,12222解得a2=8.當(dāng)n±2時(shí),答案】答案】答案】答案】a=S—Snnn-137=2血2—(n—l)2]+°[n—(n—l)]=2(2n—l)+7=3n+2.又a=5滿足a=3n+2,ln?:a=3n+2(nWN*)?nTa—a=3n+2—[3(n—1)+2]nn—l=3(n±2,n^N*),???數(shù)列{a}是以5為首項(xiàng),3為公差的等差數(shù)列.n由已知得b=2an(nGN*),nbn+1=
?bn+1=
?b—2an+i—an—2彳—8(nGN*)2an又b=2a1=32,???數(shù)列{b}是以32為首項(xiàng),8為公比的等比數(shù)列.n.??T.??T—n32(1—8n)~1—8=32(8n—1).22x4已知函數(shù)f(x)=X+2,數(shù)列{a}滿足:a=3,a+=f(a).x+2n13n+1nf1〕求證:數(shù)列為等差數(shù)列,并求數(shù)列{a}的通項(xiàng)公式;anInJ8記S=aa+aa+…+aa,求證:S〈:.n1223nn+1n3證明:2a(I)..°a+]=f(a)=a工2,n證明:2a(I)..°a+]=f(a)=a工2,n+1na+2n111*.=—+7aa2n+1n1an+111
a=2nf1〕則(了}成等差數(shù)列,a<n丿11」、13「、12n+1所以a=a+(n-1)x2=4+(n_1)x2^^n1則&=n42n+1'(H)7anan+142n+14_=(1
2n+3=8(2n+1?\S=aa+aa+???+aan1223nn+1=8〔3-5+5-7+…+12n+1亠=8卩_亠〈82n+3丿=°(32n+3丿〈3.TOC\o"1-5"\h\z已知數(shù)列{a}的前三項(xiàng)依次為2,8,24,且{a—2a}是等比數(shù)列.nnn-1fa〕(I)證明]器是等差數(shù)列;仃I)試求數(shù)列{a}的前n項(xiàng)和S的公式.nn【答案】Va—2a=4,a—2a=8,2132/.{a—2a}是以2為公比的等比數(shù)列.nn—1/a—2a=4x2n—2=2n.nn—1oo等式兩邊同除以2n,得扇一2—1=1,???<!;>是等差數(shù)列.aa根據(jù)(I)可知孑=〒+(n—1)X1=n,.?.a=n?2n.2n2nS=1X2+2X22+3X23+???+n?2n,'①n2S=1X22+2X23+???+(n—1)?2n+n?2n+i?'②n
①-②得:—S=2+22+232n—n?2n+12(1—2(1—2n)1—2—n?2n+1=2n+1—2—n?2n+1.S=(n—1)?2n+1+2.n8.已知數(shù)列{an}的各項(xiàng)為正數(shù),前n項(xiàng)和為?且滿足:Sn=|Lan+aj(nGN*)-n族+柴+…+杰'仃1)設(shè)丁=n(I)證明:數(shù)列{S2}族+柴+…+杰'仃1)設(shè)丁=n求T.n答案】(I)證明:當(dāng)n=1時(shí),a=S,又S=(a+a](nWN*),11n2\na丿n.S1=|^s1+S,解得S]=i.1當(dāng)n$2時(shí),a=S—Snnn—1?:Sn=2卜n-Sn—1+SIS.nn—1即S+S=■—,化簡得S2—S2=1,nn—1S—Snn—1nn—1{S2}是以S2=1為首項(xiàng),1為公差的等差數(shù)列.n1仃I)由(I)知S2=n,nT=2s2+2s22"S2,n212222nn即T=1?2+2?+(n—1)*+n?土.'①n2222n—12n
①對得2「i?2+?“+(n—i)2:+n?②①-②得1「利+…+八圭1一11一n+2—n2n+12n2n+12n+—n.?.T=2—.?.T=2—nn+22n-9.數(shù)列{9.數(shù)列{a}滿足a=1,a+n1n+1+4=1(nWN*),記S=a2+a2a2.02n12nnf1〕(I)證明:匕是等差數(shù)列;02n(II)對任意的n(II)對任意的nWN*,如果S2n+1-Sn益恒成立,求正整數(shù)m的最小值.【答案】TOC\o"1-5"\h\z(I)證明:丄一丄=4=丄=丄+(n—1)X4n丄=4n—3,a2a2a2a2a2n+1nn1nf1〕叫計(jì)是等差數(shù)列.n(II)令g(n)=S一S=~_+_oit2n+1n4n+14n+58n+1Vg(n+1)—g(n)<0,???g(n)在nwN*上單調(diào)遞減,1414m28.?.[g(n)]=g(1)=.??.羔W蘇恒成立nmMmax4545303又???mWN,???正整數(shù)m的最小值為10.答案】答案】已知數(shù)列{a}是首項(xiàng)&=丄,公比為L的等比數(shù)列,設(shè)b+15loga=t,常數(shù)tGN*.n13廠3「n3n33(I)求證:{b}為等差數(shù)列;n仃I)設(shè)數(shù)列{c}滿足c=ab,是否存在正整數(shù)k,使C—,ck,C—成等比數(shù)列?若存在,nnnnk+1kk+2求k,t的值;若不存在,請說明理由.【答案】證明:an=3—|,bn+]—bn=—15log3[節(jié)j=5,n???{b}是首項(xiàng)為b=t+5,公差為5的等差數(shù)列.n1TOC\o"1-5"\h\znnc=(5n+1)?3—,令5n+t=x,則c=x?一:,n3n3n+1n+2c=(x+5)?3—',c=(x+10)?3—',n+13n+23nn+1n+2右Cf=cc,貝y(x?3—s)2=(x+5)?3——?(x+10)?3——,kn+1n+23335化簡得2x2—15x—50=0,解得x=10或一§(舍),進(jìn)而求得n=1,t=5,綜上,存在n=1,t=5適合題意.在數(shù)列{a}中,a=1,a=2a+2n+1.TOC\o"1-5"\h\zn1n+1n(I)設(shè)b=a—a+2,(nGN*),證明:數(shù)列{b}是等比數(shù)列;nn+1nn仃I)求數(shù)列{a}的通項(xiàng)a.nn由已知a=2a+2n+l①TOC\o"1-5"\h\zn+1n得a=2a+2n+3②n+2n+1②一①,得a—a=2a—2a+2n+2n+1n+1n設(shè)a-a+c=2(a-a+c).n+2n+1n+1n展開與上式對比,得c=2因此,有a-a+2=2(a-a+2)n+2n+1n+1n由b=a—a+2,得b=2b,nn+1nn+1n由a=1,a=2a+3=5,得b=a-a+2=6,121121故數(shù)列{b}是首項(xiàng)為6,公比為2的等比數(shù)列n由(I)知,b=6X2n-i=3X2nn則a-a=b-2=3X2n-2,n+1nn所以a=a+(a—a)+(a—a)+…+(a—a)n12132nn-1=1+(3X2i—2)+(3X22—2)+…+(3X2n-i—2)=l+3(2+22+23+???+2n-i)—2(n—1)a=3X2n—2n—3,n當(dāng)n=l時(shí),a=3X2i—2X1—3=6—5=1,故%也滿足上式故數(shù)列{a}的通項(xiàng)為a=3X2n—2n—3(nWN*).nn12?在數(shù)列嗎中,%=6,an=jan—1+jX^(neN*且心2)?(I)證明:{a+3"}是等比數(shù)列;n3n仃I)求數(shù)列{a}的通項(xiàng)公式;n設(shè)S為數(shù)列{an}的前n項(xiàng)和,求證Sn<2.答案】(I)由已知,a+」得」an+(I)由已知,a+」得」an+3"n+13n+11)+1(2an+2?3n+「3n+111an+3"n3n(1)設(shè)(1)設(shè)An=an+3?則人=勺+1=6+3=2,且q=2則An=(2)n,???an+是,可得^21,1112?3n—2n,1TOC\o"1-5"\h\z——+—?—■<—2n23n22?6n213.已知數(shù)列{a}滿足a-2,a-2a—n+1(nWN*).n1n—1n(I)證明:數(shù)列{a—n}是等比數(shù)列,并求出數(shù)列{a}的通項(xiàng)公式;nnn仃I)數(shù)列{b}滿足:b-一(nGN*),求數(shù)列{b}的前n項(xiàng)和S.nn2a—2nnnn答案】答案】答案】答案】(I)證法一:由a=2a—n+1可得a—(n+l)=2(a—n),又a=2,則a—1=1,n+1nn+1n11???數(shù)列{a-n}是以a—1=1為首項(xiàng),且公比為2的等比數(shù)列,n1則a—n=1X2n—1,Aa=2n-1+n.nn、十、丄a—(n+1)2a—n+1—(n+1)2a—2n證法二:十1=n=n=2,a—na—na—nnnna—nn又a1=2,則%—1=1,???數(shù)列{a—n}是以a—1=1為首項(xiàng),且公比為2的等比數(shù)列,n1則a—n=1X2n—1,?a=2n—1+n.nnnnn(II)Tb=,?:b=QQn2a—2nn2a—2n2nnn.?.S=b+b+b=g+2?(+)2n?(札①n12n222|Sn=(2)2+2?g)3(n—1)(|)n+n?(2)n+1②由①—②,'n=2+(2)2+(2)3+???+(2)n—n?g)n+1=2[1—4^1—2—n?(Rn+i=1—(n+2)(2)n+i,Sn=2—(n+2)g)n.14.在數(shù)列{a}中,a=1,2na=(n+1)a,n^N*.n1n+1no(I)設(shè)b=n證明:數(shù)列{b}是等比數(shù)列;nnn仃I)求數(shù)列{a}的前n項(xiàng)和S.nn/、廠、「ban1(I)因?yàn)楱搹S2,nn所以{b}是首項(xiàng)為1,公比為2的等比數(shù)列.n2O1門仃I)由(I)可知-=7—,即a=--,n2n-1n2n-1234S234Sn=1+2+77+73+…+n2n-1,上式兩邊乘以2得1123n-1n2Sn=2+2;+2;+…+右+2?兩式相減’得2Sn=1+2+2+±+…+右2Sn=2Sn=2-2+n所以Sn=4n2+n2n-1設(shè)數(shù)列{a}的前n項(xiàng)和為S,且S=(1+入)一入a,其中入工一1,0.nnnn(I)證明:數(shù)列{a}是等比數(shù)列;n仃I)設(shè)數(shù)列{a}的公比q=f(入),數(shù)列{b}滿足b=;,b=f(b)(nWN*,n±2),求數(shù)列nn12nn-1{b}的通項(xiàng)公式.n【答案】(I)由Sn=(1+入)一入anSn—1=(1+入)一入an—1(n三2),相減得:an=—入相減得:an=—入an+入an—1,an入an—11+入(n±2).???數(shù)列{an}是等比數(shù)列入bn11(n)f(入)=i^T,???bn=i+bn_ibn=bn^i+1‘.?.{£}是首項(xiàng)為占=2,公差為i的等差數(shù)列;bnb1丄
bn=2+(n—l)=n+l.bn=1
n+1.在等差數(shù)列{a}中,a=30,a=50.TOC\o"1-5"\h\zn1020(I)求數(shù)列{a}的通項(xiàng)a;nn仃I)令b=2a—10,證明:數(shù)列{b}為等比數(shù)列;nnn(III)求數(shù)列{nb}的前n項(xiàng)和T.nn【答案】(I)由an=ai+(n—1)d,aio=30,a20=50,但+9d=30得方程組{1|rc,八,解得a=12,d=2.a+19d=5011?a=12+(n—1)?2=2n+10.n=4由(I)得b=2a—10=22n+10—10=22n=4n,?n+1==4nnbn???{b}是首項(xiàng)是4,公比q=4的等比數(shù)列.n由nb=nX4nn得:T=1X4+2X42+???+nX4nn4T=1X42+???+(n—1)X4n+nX4n+1n相減可得:一3T=4+424n一nX4n+1=n4(l—4n)—3—nX4n+i(3n—l)X4n+i+49已知{a}是等差數(shù)列,其前n項(xiàng)和為S,已知a=11,S=153,nn39(I)求數(shù)列{a}的通項(xiàng)公式;n仃I)設(shè)a=logb,證明{b}是等比數(shù)列,并求其前n項(xiàng)和T.n2nnn答案】a+2d=111(I)19X8i解得:d=3,a=5,/.a=3n+29a+=—d=1531nI12(I)b=2an(I)b=2an,n2an+1—an=23=82an???{b}是公比為8的等比數(shù)列n又?b]=2又?b]=2a1=32,32(1—8n)1—8=32(8n—1).在數(shù)列{a}中,a=3,a=2a+n—2(n±2,且nGN*).TOC\o"1-5"\h\zn1nn—1(I)求a2,a3的值;仃I)證明:數(shù)列{a+n}是等比數(shù)列,并求{a}的通項(xiàng)公式;nn(III)求數(shù)列{a}的前n項(xiàng)和S.nn【答案】(I)?a=3,a=2a+n—2(n三2,且nGN*),nn—1a=2a+2—2=6,21a=2a+3-2=13.32仃I)證明:a+n(2a+n仃I)證明:n‘——n—1—a+(n—1)a+n—1n—1n—1=2,2a+2n—2n——=2,a+n—1n—1???數(shù)列{a+n}是首項(xiàng)為a+1=4,公比為2的等比數(shù)列.n1a+n=4?2n—i=2n+1,即a=2n+1—n,nn.*.{a}的通項(xiàng)公式為a=2n+i—n(nWN*).nn(III)°.°{a}的通項(xiàng)公式為a=2n+i—n(nGN*),nn??S=(22+23+24+^+2n+i)—n(l+2+3+???+n)22X(1—2n)nX(n+1)=1—2—2n2+n+8=2n+2—已知數(shù)列{a}滿足a=2,a=3a+2(nGN*).n1n+1n(I)求證:數(shù)列{a+1}是等比數(shù)列;n仃I)求數(shù)列{a}的通項(xiàng)公式.n【答案】(I)證明:由a=3a+2得a+1=3(a+1),n+1nn+1na+1小從而肓T=3'n
即數(shù)列{a+1}是首項(xiàng)為3,公比為3的等比數(shù)列.n仃I)由(I)知,a+l=3?3n-i=3na=3n—1.nn已知數(shù)列{a}滿足a=2,a=4a+2n+i,S為{a}的前n項(xiàng)和.TOC\o"1-5"\h\zn1n+1nnn(I)設(shè)匕=&+2,證明數(shù)列{b}是等比數(shù)列,并求數(shù)列{a}的通項(xiàng)公式;nnnn2nn3仃I)設(shè)T=&,n=1,2,3,…,證明:ZTnSi2ni=1【答案】(I)因?yàn)閎=a+2n+i=(4a+2n+i)+2n+i=4(a+2n)=4b,且b=a+2=4,n+1n+1nnn11所以{b}是以4為首項(xiàng),以q=4為公比的等比數(shù)列.n所以b=bqn-l=4n,所以a=4n—2n.n1n(II)S=a+a——a=(4+42——4n)—(2+22——2n)n12n=|(4n—l)—2(2n—l)=|[(2n+1)2—3?2"+1+2]12=3(2n+i—1)(2n+i—2)=§(2n+i—1)(2n—1),所以Tn所以Tn=S=|xn(2n+1—l)(2n—l)=2X(2n—l因此為Tj=2工i=1i=1(右已知數(shù)列{a}的前n項(xiàng)和為S,且S=4a—3(nGN*).nnnn(I)證明:數(shù)列{a}是等比數(shù)列;
仃I)若數(shù)列{b}滿足b=a+b(nWN*),且b=2,求數(shù)列{b}的通項(xiàng)公式.nn+1nn1n【答案】(I)證明:由S=4a—3,n=l時(shí),a=4a—3,解得a=l.nn1114n22時(shí),S=4a—3,所以當(dāng)n22時(shí),a=S—S=4a—4a,得a=an-1n-1nnn-1nn-1n3n-14又a=lMO,所以{a}是首項(xiàng)為1,公比為3的等比數(shù)列.1n3仃I)因?yàn)樨闕)因?yàn)閍n=[3f1由b=a+b(nGN*),n+1nn得叮1—bn=dT1丄ITOC\o"1-5"\h\z1(3丿(4屮—1可得bn=b1+(b2-b1)+(b3-b2)+-+(bn-D=a22所以a丄=3a22所以a丄=3a,即-a1=3,故數(shù)列{a}是公比q=3的等比數(shù)列.n+13na3n3n1-3當(dāng)n=1時(shí)也滿足,所以數(shù)列{bn}的通項(xiàng)公式為bn=3^1-1.222?在各項(xiàng)均為負(fù)數(shù)的數(shù)列{a}中,已知點(diǎn)(a,a」(nwN*)在函數(shù)y=F的圖象上,且a?annn+1325=_8=27.(I)求證:數(shù)列{a}是等比數(shù)列,并求出其通項(xiàng);n仃I)若數(shù)列{b}的前n項(xiàng)和為S,且b=a+n,求S.nnnnn【答案】2(I)證明:因?yàn)辄c(diǎn)(a,a丄)(n^N*)在函數(shù)y=尹的圖象上,nn+13
因?yàn)閍2a5=827,則ai因?yàn)閍2a5=827,則aiq?aq4=273由于數(shù)列{an}的各項(xiàng)均為負(fù)數(shù)’則叮-2,所以an(H)由⑴知,an—[|「2,bn—[3「2+n,所以S=|?n(2、n_1n2+n_9lljn-223.已知數(shù)列{a}的前n項(xiàng)和為S,且S=l?2n-i—2,b=annnnn+1(I)求數(shù)列{a}的通項(xiàng)公式;n仃I)證明:數(shù)列{b}是等比數(shù)列,并求其前n項(xiàng)和T.nn【答案】(I)VS=3?2n—i—2,n當(dāng)n±2時(shí),a=S—S=3?2n—i—2—3?n—2+2=3?2n—2,nnn—1f1(n=1),當(dāng)n=l時(shí),a=1不滿足上式1n3?2n-2(n三2).仃I)b=a=3X2n—1,b=a=3,nWN*.b3X2n—1…一L=b3X2n—1…一L==2b3X2n—2n—1nGN*,???數(shù)列{b}是首項(xiàng)為3,公比為2的等比數(shù)列;n3(1—2n)由等比數(shù)列前n項(xiàng)和公式得Tn=F-=3X2n-3?設(shè)數(shù)列{a}的前n項(xiàng)和為S,已知a=5,a=S+3n(nGN*).nn1n+1n答案】答案】答案】答案】(I)令b=S-3n,求證:{b}是等比數(shù)列;nnn(ID令Lobhob,設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,求滿足不等式Ti>4-0|1的n的2n+12n+2最小值.答案】(I)證明:b=S—3=2工0,11S—S=S+3n,即卩S=2S+3n,TOC\o"1-5"\h\zn+1nnn+1nbS—3n+i2S—3口+1+3口*=F+±=n=2W0bS—3nS—3n2產(chǎn)0,nnn所以{b}是等比數(shù)列.n(II)由(I)知b=2n,n則。=nlog2則。=nlog2bn+11?lOg2bn+21(n+1)?(n+2)11n+1n+2‘T=n1n+2,T=n1n+2,T=n12011
n+2>4026’n>2011,即n=2012.mina已知數(shù)列{a}滿足:a=1,a+=口JLq(口丘N*)?n1n+1a+2n〔1〕求證:數(shù)列〔一+1[是等比數(shù)列;anb1若「T=T+1,且數(shù)列{b}是單調(diào)遞增數(shù)列,求實(shí)數(shù)入的取值范圍.—人a(I)證明:古=i+a,++i=2G+i),TOC\o"1-5"\h\zn+1nn+1n1f1〕a+1=2工0,所以數(shù)列{丁+1}是等比數(shù)列.aa1n(n)a(n)a+1=2n,an=12n—1'b1,+1=2b1,+1=2n,n—入anL1—2"("―入),b=2"-1(n—1—入)(n三2),b=—入適合,n1所以b=2n-1(n—1—入)(nWN*),n由b〉b得2n+1(n+1—入)〉2n(n—入),n+1nTOC\o"1-5"\h\z入〈n+2,入〈(n+2)=3,min???入的取值范圍為{入|入〈3}.已知數(shù)列{a}中,a=2,a=4,a=3a—2a(n三2,nGN*).n12n+1nn—1(I)證明:數(shù)列{a+—a}是等比數(shù)列,并求出數(shù)列{a}的通項(xiàng)公式;n+1nn2(a—1)仃I)記b=(;),數(shù)列{b}的前n項(xiàng)和為S,求使S>2010的n的最小值.nannnn【答案】(I)a=3a—2a(n三2),n+1nn—1??(a—a)=2(a—a)(n22)?n+1nnn—1*.*a=2,a=4,?.a—a=2工0,a—a工0,1221nn—1故數(shù)列{a+—a}是首項(xiàng)為2,公比為2的等比數(shù)列,n+1n?a—a=(a—a)2n—1=2n,n+1n21
a=(a—a)+(a—a)+(a—a)+…+nnn-1n-1n-2n-2n-3(a-a)+a211=2n—l+2n—2+2n—3+???+21+22(1-2n-1)1—2=2n(n22).又a=2滿足上式,.:a=2n(nWN*).1n(II)由(I)知匕=n2(a(II)由(I)知匕=n2(a—1)TTa=2(1-OM1-1n=2—12n—1,?S=2n—n111+去+云+…+1—丄c2n1—丄c2nc/1)小小,1=2n—=2n—2l1—2j=2n—2+2—?1—2由S>2010得:n2n—2+B〉2010,即n+£〉1006,2n—12n因?yàn)閚為正整數(shù),所以n的最小值為1006.已知數(shù)列{a}的前n項(xiàng)和為S,滿足S+2n=2a.nnnn證明:數(shù)列{a+2}是等比數(shù)列,并求數(shù)列{a}的通項(xiàng)公式a;nnn若數(shù)列{b}滿足b=log(a+2),求數(shù)列{丄}的前n項(xiàng)和T.nn2nbnn答案】(I)證明:由S+2n=2a,得答案】(I)證明:由S+2n=2a,得S=2a-2n,nnnn當(dāng)nWN*時(shí),S=2a-2n,①nn當(dāng)n=l時(shí),S=2a-2,則a=2,111當(dāng)n三2時(shí),S=2a-2(n-1),②n-1n-1①-②,得a=2a-2a-2,nnn-1即a=2a+2,nn-1?*.a+2=2(a+2),nn-1a+2a+2=2,n-1{a+2}是以a+2為首項(xiàng),以2為公比的等比數(shù)列.n1a+2=4?2n-i,n?a=2n+1-2.n(II)解:Ta=2n+1—2,n?b=n(n+1),n...1=1=1—丄,bn(n+1)nn+1n?T=n1+b1?T=n1+b1+???+—bb2n11111=1一—+?…223nn+1
1=1-n+1n=n+1?【解析】考點(diǎn):數(shù)列的求和;等比數(shù)列的通項(xiàng)公式專題:綜合題.分析:(I)由S+2n=2a,得S=2a-2n,由此利用構(gòu)造法能夠證明數(shù)列{a+2}是等比數(shù)nnnnn列,并求出數(shù)列{a}的通項(xiàng)公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版合同解除權(quán)行使民事答辯狀撰寫要點(diǎn)3篇
- 二零二五版門樓智能停車場管理系統(tǒng)合同4篇
- 2025年度農(nóng)村土地流轉(zhuǎn)使用權(quán)租賃合同規(guī)范文本4篇
- 二零二五年度大理石公共設(shè)施維修與更新合同4篇
- 2025年度文化產(chǎn)業(yè)園建設(shè)項(xiàng)目履約擔(dān)保合同范本4篇
- 二零二五年度離婚雙方車輛權(quán)益處理及子女監(jiān)護(hù)、贍養(yǎng)、教育費(fèi)用承擔(dān)合同4篇
- 正規(guī)養(yǎng)雞企業(yè)2025年度稅務(wù)合同2篇
- 2025年度螺桿式壓風(fēng)機(jī)安全防護(hù)設(shè)施安裝與驗(yàn)收合同4篇
- 2025年新能源項(xiàng)目投標(biāo)失敗風(fēng)險(xiǎn)評估與應(yīng)對方案合同4篇
- 2025年度龍門吊項(xiàng)目融資合同:支持大型設(shè)備購置4篇
- 電纜擠塑操作手冊
- 浙江寧波鄞州區(qū)市級名校2025屆中考生物全真模擬試卷含解析
- IATF16949基礎(chǔ)知識培訓(xùn)教材
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)知能訓(xùn)練與指導(dǎo)-西北農(nóng)林科技大學(xué) 中國大學(xué)慕課MOOC答案
- 勞務(wù)派遣公司員工考核方案
- 基礎(chǔ)生態(tài)學(xué)-7種內(nèi)種間關(guān)系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術(shù)》課件 第3講 阻燃基本理論
- 2024-2030年中國黃鱔市市場供需現(xiàn)狀與營銷渠道分析報(bào)告
- 招標(biāo)監(jiān)督報(bào)告
- 項(xiàng)目立項(xiàng)申請書
評論
0/150
提交評論