版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MemeticAlgorithmMember:楊勇佳、易科、朱家驊、蘇航第1頁Contents1Introduction2ThedevelopmentofMAs2.11stgeneration2.22ndgeneration2.33rdgeneration3
Applications4Example第2頁IntroductiongenememeCommonInthegeneticprocessofcontinuousevolutionanddevelopmentthroughcrossoverandmutationoperationsSuccessionanddevelopmentinthecommunicationprocessthroughinteraction,integration,mutation,etc.DifferentInbiologicalevolution,variationisrandom,onlyafewgoodvariationcanberetainedinnaturalselectionCulturaltransmissionprocessoftenwithfullknowledge-basedprofessionalfields,evolutionisfasterHawkins(1976)raisedmemenotion第3頁IntroductionInspiredbybothDarwinianprinciplesofnaturalevolutionandDawkins'notionofameme,theterm“MemeticAlgorithm”(MA)wasintroducedbyMoscatoin1989whereheviewedMAasbeingclosetoaformofpopulation-basedhybrid
geneticalgorithm(GA)coupledwithanindividuallearningprocedurecapableofperforminglocalrefinements.Ingeneral,usingtheideasofmemeticswithinacomputationalframeworkiscalled"MemeticComputingorMemeticComputation"(MC).MAisamoreconstrainednotionofMC.Morespecifically,MAcoversoneareaofMC第4頁ThedevelopmentofMAs—1st
generationamarriagebetweenapopulation-basedglobalsearch(oftenintheformofanevolutionaryalgorithm)coupledwithaculturalevolutionarystage.ThissuggestswhythetermMAstirredupcriticismsandcontroversiesamongresearcherswhenfirstintroduced.Pseudocode:Procedure
MemeticAlgorithm
Initialize:Generateaninitialpopulation;
while
StoppingconditionsarenotsatisfieddoEvaluateallindividualsinthepopulation.Evolveanewpopulationusingstochasticsearchoperators.Selectthesubsetofindividuals,thatshouldundergotheindividualimprovementprocedure.
for
eachindividualindoPerformindividuallearningusingmeme(s)withfrequencyorprobabilityofforaperiodof.ProceedwithLamarckianorBaldwinianlearning.
endforendwhileHybrid
Algorithms第5頁ThedevelopmentofMAs—2nd
generationexhibitingtheprinciplesofmemetictransmissionandselectionintheirdesign.InMulti-memeMA,thememeticmaterialisencodedaspartofthe
genotype.MAconsideringmultipleindividuallearningmethodswithinanevolutionarysystem,thereaderisreferredto.Multi-meme,Hyper-heuristicandMeta-LamarckianMA第6頁ThedevelopmentofMAs—3nd
generationCo-evolution[8]
andself-generatingMAs[9]
Incontrastto2ndgenerationMAwhichassumesthatthememestobeusedareknownapriori,3rdgenerationMAutilizesarule-basedlocalsearchtosupplementcandidatesolutionswithintheevolutionarysystem,thuscapturingregularlyrepeatedfeaturesorpatternsintheproblemspace.第7頁Thebasicmodel
of
MAsInitialpopulationTheinitialparametersofthealgorithmpopSizePopulationsizeoffspringSizeThenumberobtainedbytheoffspringgeneratingfunctionlLengthcodingFFitnessfunctionGGeneratingfunctionUUpdatefunctionLCollectionoflocalsearchstrategy第8頁MAMethodForalltheproblemswewanttofindtheoptimalsolution.facingafundamentalquestionhowtogenerationPseudocode:ProcessDo-Generation(↓↑pop:individual[])variablesbreeders,newpop:Individual[];beginbreeders←Select-From-Population(pop);newpop←Generate-New-Population(breeders);pop←Update-Population(pop,newpop)end第9頁MAMethod
ForGenerate-New-Populationprocess,themosttypicalsituationinvolvesutilizingjusttwooperators:
recombinationandmutation.Pseudocode:ProcessGenerate-New-Population(↓pop:Individual[],↓op:Operator[])→Individual[]variablesbuffer:Individual[][];j:[1..|op|];beginbuffer[0]←pop;forj←1:|op|dobuffer[j]←Apply-Operator(op[j],buffer[j?1]);Endfor;第10頁Inessence,amutationoperatormustgenerateanewsolutionbypartly
modifyinganexistingsolution.Thismodificationcanberandom–asitistypicallythecase–orcanbeendowedwithproblem-dependentinformationsoastobiasthesearchtoprobably-goodregionsofthesearchspaceMAMethod第11頁MAMethodPseudocode:ProcessLocal-Improver(↓↑current:Individual,↓op:Operator)
variables
new:Individual
begin
repeat
new←Apply-Operator(op,current);
if(Fg(new)?Fg(current))then
current←new;
endif
untilLocal-Improver-Termination-Criterion();
returncurrent;
end第12頁MAMethodAfterhavingpresentedtheinnardsofthegenerationprocess,wecannowhaveaccesstothelargerpicture.ThefunctioningofaMAconsistsoftheiterationofthisbasicgenerationalstepPseudocode:ProcessMA()→Individual[]
variables
pop:Individual[];
begin
pop←Generate-Initial-Population();
repeat
pop←Do-Generation(pop)
ifConverged(pop)then
pop←Restart-Population(pop);
endif
untilMA-Termination-Criterion()
end第13頁MAMethodTheGenerate-Initial-Populationprocessisresponsibleforcreatingtheinitialsetof|pop|configurationsPseudocode:ProcessGenerate-Initial-Population(↓μ:N)→Individual[]
variables
pop:Individual[];
ind:Individual;
j:[1..μ];
begin
forj←1:μdo
ind←Generate-Random-Solution();
pop[j]←Local-Improver(ind);
endfor
returnpop
end第14頁MAMethodConsiderthatthepopulationmayreachastateinwhichthegenerationofnewimprovedsolutionbeveryunlikelyPseudocode:ProcessRestart-Population(↓pop:Individual[])→Individual[]
variables
newpop:Individual[];
j,#preserved:[1..|pop|];
begin
#preserved←|pop|·%PRESERVE;
forj←1:#preserveddo
newpop[j]←ithBest(pop,j);
endfor
forj←(#preserved+1):|pop|do
newpop[j]←Generate-Random-Configuration();
newpop[j]←Local-Improver(newpop[j]);
endfor;
returnnewpop
end第15頁MAsInfact,MAsisageneticalgorithmframework,isaconcept,inthisframework,usingdifferentsearchstrategiescanconstitutedifferentMAs,suchasglobalsearchstrategycanbeusedgeneticalgorithms,evolutionstrategies,evolutionaryprogramming,etc.localsearchstrategycanbeusedtoclimbthesearch,simulatedannealing,greedyalgorithms,tabusearch,guidedlocalsearch.第16頁Applicationsmanyclassical
NP
problemForexamplegraphpartitioning,
multidimensionalknapsack,
travellingsalesmanproblem,
quadraticassignmentproblem,
setcoverproblem,
minimalgraphcoloring,
maxindependentsetproblem,
binpackingproblem.Comparisonwiththegeneticalgorithmconvergesfaster,betterresults.第17頁Example
第18頁Example
第19頁Example
第20頁Example
第21頁Example
第22頁ExampleStepusingsimulatedannealingalgorithmforlocalsearchSTEP1Givenaninitialtemperature,Individualastheinitialstateofthesimulatedannealingalgorithm;STEP2Generateanewstate,theneighborhoodfunctiondefinedasInotherstatesofthetwoitemstochoose;STEP3
calculatethenumberofoldandnewstateenergy,theenergyfunctionalIsde
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年二零二四職業(yè)健康體檢與職工福利保障服務(wù)協(xié)議3篇
- 2024債務(wù)轉(zhuǎn)移與資產(chǎn)置換合作協(xié)議范本3篇
- 2024年橋梁亮化項目:戶外照明設(shè)備購銷合同
- 簡單沖壓課程設(shè)計
- 2024年苗圃基地樹苗種植承包3篇
- 2024年度砂石開采與礦產(chǎn)資源補償合同3篇
- 文字掃光玩法課程設(shè)計
- 樓板梁課程設(shè)計
- 2024年地下室承臺施工環(huán)保責任承諾合同3篇
- 托班感官操作課程設(shè)計
- 天津市部分重點中學高一上學期期末考試數(shù)學試卷及答案(共四套)
- 鎮(zhèn)江市2023-2024學年九年級上學期期末英語試卷(含答案解析)
- 醫(yī)院禁毒行動方案
- 學生公寓物業(yè)服務(wù)方案投標方案(技術(shù)方案)
- 水上交通安全生產(chǎn)培訓
- 加強老舊小區(qū)物業(yè)管理的思考
- 超聲影像學基礎(chǔ)
- 倉庫溫濕度分布驗證報告
- 【A科技公司員工招聘問題調(diào)查研究及優(yōu)化策略13000字(論文)】
- 土地整治投標方案(完整技術(shù)標)
- 某煤礦潰倉事故專項安全風險辨識評估報告示例
評論
0/150
提交評論