2022屆北京市崇文區(qū)中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
2022屆北京市崇文區(qū)中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
2022屆北京市崇文區(qū)中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
2022屆北京市崇文區(qū)中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
2022屆北京市崇文區(qū)中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說(shuō)法正確的是()A.①②B.②③C.①②④D.②③④2.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±203.剪紙是我國(guó)傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形的是()A. B. C. D.4.按如圖所示的方法折紙,下面結(jié)論正確的個(gè)數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個(gè) B.2個(gè) C.1個(gè) D.4個(gè)5.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或46.如圖圖形中是中心對(duì)稱圖形的是()A. B.C. D.7.一個(gè)幾何體的三視圖如圖所示,根據(jù)圖示的數(shù)據(jù)計(jì)算出該幾何體的表面積()A.65π B.90π C.25π D.85π8.《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就.其中記載:今有共買物,人出八,盈三;人出七,不足四,問(wèn)人數(shù)、物價(jià)各幾何?譯文:今有人合伙購(gòu)物,每人出8錢,會(huì)多3錢;每人出7錢,又會(huì)差4錢,問(wèn)人數(shù)、物價(jià)各是多少?設(shè)合伙人數(shù)為x人,物價(jià)為y錢,以下列出的方程組正確的是(

)A. B. C. D.9.對(duì)于不為零的兩個(gè)實(shí)數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.10.在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,參加跳遠(yuǎn)的名運(yùn)動(dòng)員的成績(jī)?nèi)缦卤硭?成績(jī)(米)人數(shù)則這名運(yùn)動(dòng)員成績(jī)的中位數(shù)、眾數(shù)分別是()A. B. C., D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若關(guān)于的一元二次方程有實(shí)數(shù)根,則的取值范圍是________.12.如圖所示,在長(zhǎng)為10m、寬為8m的長(zhǎng)方形空地上,沿平行于各邊的方向分割出三個(gè)全等的小長(zhǎng)方形花圃則其中一個(gè)小長(zhǎng)方形花圃的周長(zhǎng)是______m.13.已知x+y=8,xy=2,則x2y+xy2=_____.14.分解因式:9x3﹣18x2+9x=.15.已知是銳角,那么cos=_________.16.在實(shí)數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.三、解答題(共8題,共72分)17.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點(diǎn)M為上一動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),射線AM與射線EC交于點(diǎn)F.(1)如圖②,當(dāng)F在EC的延長(zhǎng)線上時(shí),求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(zhǎng)(結(jié)果保留根號(hào)).18.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長(zhǎng);設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過(guò)程中EP、EQ、EC之間的數(shù)量關(guān)系.19.(8分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測(cè)得一海島在南偏西32°的方向上,向東走過(guò)780米后到達(dá)B處,測(cè)得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數(shù)據(jù):tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)20.(8分)如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成A、B、A、B、C共5個(gè)區(qū),A區(qū)是邊長(zhǎng)為am的正方形,C區(qū)是邊長(zhǎng)為bm的正方形.列式表示每個(gè)B區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);如果a=20,b=10,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.21.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個(gè)全等的直角三角形如圖(1)擺放時(shí)可以利用面積法”來(lái)證明勾股定理,過(guò)程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過(guò)點(diǎn)D作DF⊥BC交BC的延長(zhǎng)線于點(diǎn)F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡(jiǎn)得:a2+b2=c2請(qǐng)參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c222.(10分)已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.23.(12分)某中學(xué)七、八年級(jí)各選派10名選手參加知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a、b.隊(duì)別平均分中位數(shù)方差合格率優(yōu)秀率七年級(jí)6.7m3.4190%n八年級(jí)7.17.51.6980%10%(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí);所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.24.某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問(wèn)題:(1)本次調(diào)查的學(xué)生有多少人?(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是;(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】∵二次函數(shù)的圖象的開(kāi)口向上,∴a>0。∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c<0。∵二次函數(shù)圖象的對(duì)稱軸是直線x=﹣1,∴-b∴abc<0,因此說(shuō)法①正確。∵1a﹣b=1a﹣1a=0,因此說(shuō)法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說(shuō)法③錯(cuò)誤?!叨魏瘮?shù)y=∴點(diǎn)(﹣5,y1)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)的坐標(biāo)是(3,y1),∵當(dāng)x>﹣1時(shí),y隨x的增大而增大,而52∴y1<y1,因此說(shuō)法④正確。綜上所述,說(shuō)法正確的是①②④。故選C。2、B【解析】

根據(jù)完全平方式的特點(diǎn)求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點(diǎn)睛】本題考查了完全平方公式:a2±2ab+b2,其特點(diǎn)是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項(xiàng)是x和1的平方,那么中間項(xiàng)為加上或減去x和1的乘積的2倍.3、A【解析】試題分析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念可知:選項(xiàng)A既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)正確;選項(xiàng)B不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;選項(xiàng)C既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;選項(xiàng)D既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選A.考點(diǎn):中心對(duì)稱圖形;軸對(duì)稱圖形.4、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.5、D【解析】

直接利用相反數(shù)以及絕對(duì)值的定義得出x,y的值,進(jìn)而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點(diǎn)睛】此題主要考查了有理數(shù)的混合運(yùn)算,正確得出x,y的值是解題關(guān)鍵.6、B【解析】

把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形.【詳解】解:根據(jù)中心對(duì)稱圖形的定義可知只有B選項(xiàng)是中心對(duì)稱圖形,故選擇B.【點(diǎn)睛】本題考察了中心對(duì)稱圖形的含義.7、B【解析】

根據(jù)三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計(jì)算出母線長(zhǎng),然后求底面積與側(cè)面積的和即可.【詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長(zhǎng)==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).也考查了三視圖.8、C【解析】【分析】分析題意,根據(jù)“每人出8錢,會(huì)多3錢;每人出7錢,又會(huì)差4錢,”可分別列出方程.【詳解】設(shè)合伙人數(shù)為x人,物價(jià)為y錢,根據(jù)題意得故選C【點(diǎn)睛】本題考核知識(shí)點(diǎn):列方程組解應(yīng)用題.解題關(guān)鍵點(diǎn):找出相等關(guān)系,列出方程.9、C【解析】

先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當(dāng)2<x,即x>2時(shí),y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點(diǎn),故A、D錯(cuò)誤;當(dāng)2≥x,即x≤2時(shí),y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時(shí),0<x≤2,故B錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關(guān)鍵.10、D【解析】

根據(jù)中位數(shù)、眾數(shù)的定義即可解決問(wèn)題.【詳解】解:這些運(yùn)動(dòng)員成績(jī)的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點(diǎn)睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關(guān)鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎(chǔ)題.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

由題意可得,△=9-4m≥0,由此求得m的范圍.【詳解】∵關(guān)于x的一元二次方程x2-3x+m=0有實(shí)數(shù)根,∴△=9-4m≥0,求得m≤.故答案為:【點(diǎn)睛】本題考核知識(shí)點(diǎn):一元二次方程根判別式.解題關(guān)鍵點(diǎn):理解一元二次方程根判別式的意義.12、12【解析】

由圖形可看出:小矩形的2個(gè)長(zhǎng)+一個(gè)寬=10m,小矩形的2個(gè)寬+一個(gè)長(zhǎng)=8m,設(shè)出長(zhǎng)和寬,列出方程組解之即可求得答案.【詳解】解:設(shè)小長(zhǎng)方形花圃的長(zhǎng)為xm,寬為ym,由題意得,解得,所以其中一個(gè)小長(zhǎng)方形花圃的周長(zhǎng)是.【點(diǎn)睛】此題主要考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:數(shù)形結(jié)合,弄懂題意,找出等量關(guān)系,列出方程組.本題也可以讓列出的兩個(gè)方程相加,得3(x+y)=18,于是x+y=6,所以周長(zhǎng)即為2(x+y)=12,問(wèn)題得解.這種思路用了整體的數(shù)學(xué)思想,顯得較為簡(jiǎn)捷.13、1【解析】

將所求式子提取xy分解因式后,把x+y與xy的值代入計(jì)算,即可得到所求式子的值.【詳解】∵x+y=8,xy=2,

∴x2y+xy2=xy(x+y)=2×8=1.

故答案為:1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是因式分解的應(yīng)用,解題關(guān)鍵是將所求式子分解因式.14、9x【解析】試題分析:首先提取公因式9x,然后利用完全平方公式進(jìn)行因式分解.原式=9x(-2x+1)=9x.考點(diǎn):因式分解15、【解析】

根據(jù)已知條件設(shè)出直角三角形一直角邊與斜邊的長(zhǎng),再根據(jù)勾股定理求出另一直角邊的長(zhǎng),由三角函數(shù)的定義直接解答即可.【詳解】由sinα==知,如果設(shè)a=x,則c=2x,結(jié)合a2+b2=c2得b=x.∴cos==.故答案為.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是同角三角函數(shù)的關(guān)系,解題的關(guān)鍵是熟練的掌握同角三角函數(shù)的關(guān)系.16、y(x+)(x﹣)【解析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點(diǎn),可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點(diǎn)睛】本題考查實(shí)數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實(shí)數(shù)范圍內(nèi)進(jìn)行因式分解的式子的結(jié)果一般要分到出現(xiàn)無(wú)理數(shù)為止.三、解答題(共8題,共72分)17、(1)詳見(jiàn)解析;(2)2;②1或【解析】

(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問(wèn)題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問(wèn)題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時(shí),易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時(shí),連接MO,延長(zhǎng)MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點(diǎn)睛】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會(huì)利用面積的和差計(jì)算不規(guī)則幾何圖形的面積.18、(1)證明見(jiàn)解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長(zhǎng);作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點(diǎn)睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.19、10【解析】試題分析:如圖:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD=0.755CD,再根據(jù)AB=BD-CD=780,代入進(jìn)行求解即可得.試題解析:如圖:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小島到海岸線的距離是10米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形、根據(jù)圖形靈活選用三角函數(shù)進(jìn)行求解是關(guān)鍵.20、(1)(2)(3)【解析】試題分析:(1)結(jié)合圖形可得矩形B的長(zhǎng)可表示為:a+b,寬可表示為:a-b,繼而可表示出周長(zhǎng);(2)根據(jù)題意表示出整個(gè)矩形的長(zhǎng)和寬,再求周長(zhǎng)即可;(3)先表示出整個(gè)矩形的面積,然后代入計(jì)算即可.試題解析:(1)矩形B的長(zhǎng)可表示為:a+b,寬可表示為:a-b,∴每個(gè)B區(qū)矩形場(chǎng)地的周長(zhǎng)為:2(a+b+a-b)=4a;(2)整個(gè)矩形的長(zhǎng)為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個(gè)矩形的周長(zhǎng)為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點(diǎn)睛:本題考查了列代數(shù)式的知識(shí),屬于基礎(chǔ)題,解答本題的關(guān)鍵是結(jié)合圖形表示出各矩形的長(zhǎng)和寬.21、見(jiàn)解析.【解析】

首先連結(jié)BD,過(guò)點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結(jié)BD,過(guò)點(diǎn)B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點(diǎn)睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關(guān)鍵.22、(1)m≥﹣;(2)m=2.【解析】

(1)利用判別式的意義得到(2m+3)2﹣4(m2+2)≥1,然后解不等式即可;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,由條件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=1,所以2m+3)2﹣3(m2+2)﹣31=1,然后解關(guān)于m的方程,最后利用m的范圍確定滿足條件的m的值.【詳解】(1)根據(jù)題意得(2m+3)2﹣4(m2+2)≥1,解得m≥﹣;(2)根據(jù)題意x1+x2=2m+3,x1x2=m2+2,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論