版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
一元二次方程的根與系數(shù)的關系學習目標1.理解并掌握根與系數(shù)關系:
2.會用根的判別式及根與系數(shù)關系解題.x1·x2=
,探究新知(一)
完成下列表格
方程
x1
x2x1+x2x1·x2x2-5x+6=0
2
3
5
6x2+3x-10=0
2
-5
-3
-10問題:你發(fā)現(xiàn)什么規(guī)律?
①用語言敘述你發(fā)現(xiàn)的規(guī)律;兩根之和為一次項系數(shù)的相反數(shù);兩根之積為常數(shù)項
②x2+px+q=0的兩根x1,x2用式子表示你發(fā)現(xiàn)的規(guī)律.
x1+x2=-p,x1·x2=q探究(二)完成下列表方程x1x2x1+x2x1·x22x2-3x-2=02-13x2-4x+1=01問題:上面發(fā)現(xiàn)的結(jié)論在這里成立嗎?
不成立
請完善規(guī)律:
①用語言敘述發(fā)現(xiàn)的規(guī)律兩根之和為一次項系數(shù)與二次項系數(shù)之比的相反數(shù),兩根之積為常數(shù)項與二次項系數(shù)之比
②ax2+bx+c=0的兩根x1,x2用式子表示你發(fā)現(xiàn)的規(guī)律.利用求根公式推導根與系數(shù)的關系(韋達定理).推廣(由特殊到一般)ax2+bx+c=0的兩根x1=
x2=
x1+x2=
-x1·x2=
范例1.根據(jù)一元二次方程的根與系數(shù)的關系,求下列方程的兩根之和與兩根之積:
(1)x2-3x-1=0(2)2x2+3x-5=0解:(1)x1+x2=3x1·x2=-1
(2)x1+x2=-
x1·x2=-
(3)x1+x2=6x1·x2=0一元二次方程的根與系數(shù)的關系(重點)
2.已知方程x2-4x+m=0的一個根為-2,求方程的另一根及m的值.
思路點撥:根據(jù)根與系數(shù)的關系,可求出兩根的和與兩根的積,將已知的根代入即可求出另一根及m的值.
解:設原方程的兩根為x1,x2, 則x1+x2=4,x1x2=m.
∵x1=-2, ∴x2=4-x1=6,m=x1x2=-12.
即方程的另一根是6,m的值為-12.范例1.已知x=1是方程x2+bx-2=0的一個根,則方程的另一個根是()CA.1B.2C.-2D.-12.方程6x2
-3x+2=0的兩根之和是__________,兩根之積是__________.學以致用4.請寫出一個兩實數(shù)根符號相反的一元二次方程_____________________________.x2-x-6=0(答案不唯一)學以致用5.已知關于x的一元二次方程x2-6x+k+1=0的兩個實D A.8 B.7 C.6 D.5學以致用課堂小結(jié)
不解方程,根據(jù)一元二次方程根與系數(shù)的關系和已知條件結(jié)合,求得方程的另一根和方程中的待定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡安全咨詢與管理服務合同范本
- 2025版電子信息產(chǎn)業(yè)零配件綠色供應鏈管理合同4篇
- 2025年度互聯(lián)網(wǎng)金融服務合同6篇
- 年度水解彈性蛋白產(chǎn)業(yè)分析報告
- 年度皮膚科醫(yī)院市場分析及競爭策略分析報告
- 2024-2025學年新教材高中政治第3單元經(jīng)濟全球化第7課第1框開放是當代中國的鮮明標識課時分層作業(yè)含解析新人教版選擇性必修1
- 何謂二零二五年度合同履行的擔保專項審計與報告合同3篇
- 二零二五版毛竹山承包及竹林農(nóng)業(yè)科技示范合同3篇
- 速寫線性課程設計
- 2024金融服務合同范本大全
- 河南省信陽市浉河區(qū)9校聯(lián)考2024-2025學年八年級上學期12月月考地理試題(含答案)
- 火災安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書
- 快速康復在骨科護理中的應用
- 國民經(jīng)濟行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護理
- 公司收購設備合同范例
- 廣東省潮州市2023-2024學年高二上學期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書
- 氧化還原反應配平專項訓練
評論
0/150
提交評論