1-1開(kāi)源大數(shù)據(jù)技術(shù)之演進(jìn)-Fangjin Yang_第1頁(yè)
1-1開(kāi)源大數(shù)據(jù)技術(shù)之演進(jìn)-Fangjin Yang_第2頁(yè)
1-1開(kāi)源大數(shù)據(jù)技術(shù)之演進(jìn)-Fangjin Yang_第3頁(yè)
1-1開(kāi)源大數(shù)據(jù)技術(shù)之演進(jìn)-Fangjin Yang_第4頁(yè)
1-1開(kāi)源大數(shù)據(jù)技術(shù)之演進(jìn)-Fangjin Yang_第5頁(yè)
已閱讀5頁(yè),還剩73頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

EvolutionofOpenSourceDataInfrastructurePast,Present,andFutureFangjinYangCofounder@Imply2016-4-232016-4-23OverviewSimplertimeswithsmalldataTheriseofopensourceCurrentopensourcelandscapeWhereareweheaded?DataInsightsBroadly,wecareabouttwousecases:-OLTP-OLAPOLTP-businessprocessing-dealingwithtransactionsOLAP-reporting-businessintelligenceOLAPdata-dimensions&measuresSmallData++SmallDataAnalyticsTableau-Solutionsareverysimple-Fastandeasytoextractinsights-EasytocreatedifferentcustomvisualizationsDataGrowthabases-Oracle,Teradata,IBM,Microsoft,etc.Proprietarydatabasesareexpensive!TheRiseofHadoopHadoopGoogleGFSpaperpublishedin2003GoogleMapReducepaperpublishedin2004Nutchprojectstartedin2005atYahooNutchbecameHadoopandwasopensourcedin2006CommunityquicklygrewEarlyOpenSourceStacksDataDatabaseApplications/usersDataHadoopApplications/usersStorageStorageHadoopDataPProcessing(MapReduce)Applications/usersHadoopWhenonetechnologybecomesveryadopted,itslimitationsalsobecomemorewellknownHadoopisaveryflexiblesolutionMostcommonlyusedfordataprocessingNotoptimizedformanythings-manyinefficiencies!HadoopData QueriesApplications/usersRiseofOpenSourceDataInfrastructureThingsHadoopisn’tgoodat:-Fastqueries-Deliver(streamsof)events-Streamprocessing-In-memorycomputationTheselimitationsledtonewtechnologiestobecreatedDataInfrastructureSpaceTodayModernOpenSourceStacksData DeliveryProcessingStorageQueryingApplications/usersModernOpenSourceStacksData DeliveryProcessingStorageQueryingApplications/usersDataDeliveryDataproducers DeliveryDataconsumersDataDeliveryFocusisstoringdataforalimitedtimeanddeliveringitelsewhereThreedifferentapproaches-ApacheKafka-publish/subscribe,transactionqueues-RabbitMQ-publish/subscribe,distributedqueues-ApacheFlume-push-basedeventdeliveryDataDeliveryDataDataStorageDDeliveryStorageStorageDistributedfilesystemsStoredataindefinitelyStandard:HDFSCanoverlapwithdeliverysystems(e.g.Kafka)ProcessingProcessingsystemsaredesignedtotransformdataHasoverlapwithqueryingsystems-Querysystems:outputsetsmallerthaninputset-Processingsystems:outputsetsamesizeasinputset-HavingseparationismorestandardnowadaysDataDataDataDataStreamProcessingSStreamProcessingDeliveryStorageSStreamProcessingQueryingDeliveryStreamProcessingSystemsdealwithunboundedmessages/eventsDifferentapproaches-SparkStreaming-Storm-Samza-KafkaStreams-etc.StreamProcessingDataDataBatchProcessingBBatchProcessingDeliveryStorageBatchProcessingManipulate(large)staticsetsofdataDifferentapproaches-Spark-HadoopBatchProcessingQueryingDataDeliveryApplications/users ProcessingDataDeliveryApplications/usersDataDeliveryApplications/users ProcessingStorageQueryingDataDeliveryApplications/usersQueryingLargestandmostcomplex(broadrangeofusecases)Let’sfocusonthemostcommonusecase:-Businessintelligence/datawarehousing/OLAPSignificantoverlapwithstorage-SeparationisbecomingmorecommonSQL-on-HadoopEnablead-hocqueriesondifferentinputformatsExamples:Impala,Hive,SparkSQL,Drill,PrestoSQL-on-HadoopSQL-on-HadoopAdvantages:-Flexible/wfullSQLsupportDisadvantages:-Slow-serialization/deserializationcanhaveoverheadManynewstorageformats-ApacheParquet,ApacheKudu,ApacheArrow,etc.Key/ValueStoresVeryfastwritesVeryfastlookupsTimeseriesdatabasesoftenhaveK/VstorageenginesKey/ValueStoresPre-computation-Pre-computeeverypossiblequery-Pre-computeasetofqueries-ExponentialscalingcostsKey/ValueStores-Primarykey:dimensions/attributes-Value:measures/metrics(thingstoaggregate)-Stilltooslow!ColumnstoresLoad/scanexactlywhatyouneedforaqueryDifferentcompressionalgorithmsfordifferentcolumns-Encodingforstringcolumns-CompressionformeasurecolumnsDifferentindexesfordifferentcolumnsDruidTargetedforextremelylowlatencyqueries-poweringuser-facinganalyticapplicationsCustomcolumnformatoptimizedforeventdataandBIqueriesSupportslotsofconcurrentreadsStreamingdataingestionSomanychoices!Doestheprojectsolveyourusecase?Isthereanactiveandgrowingcommunity?10xfasteror10xcheaper--upgrade!TheNextFewYearsGeneralTrendsNumberofprojectsreachingsaturation

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論