




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
5JointProbabilityDistributionsandRandomSamples5.1JointlyDistributedRandomVariables5.2ExpectedValues,Covariance,andCorrelation5.3StatisticsandTheirDistributions5.4TheDistributionoftheSampleMean5.5TheDistributionofaLinearCombination
SupplementaryExercisesBibliographyInthischapter,wefirstdiscussprobabilitymodelsforthejointbehaviorofseveralrandomvariables,puttingspecialemphasisonthecaseinwhichthevariablesareindependentofoneanother.Wethenstudyexpectedvaluesoffunctionsofseveralrandomvariables,includingcovarianceandcorrelationasmeasuresofthedegreeofassociationbetweentwovariables.Introduction5.1JointlyDistributedRandomVariables
Therearemanyexperimentalsituationsinwhichmorethanonerandomvariable(rv)willbeofaninvestigator.Weshallfirstconsiderjointprobabilitydistributionsfortwodiscreterv’s,thenfortwocontinuous.TheJointProbabilityMassFunctionforTwoDiscreteRandomVariables
Theprobabilitymassfunction(pmf)ofasinglediscretervXspecifieshowmuchprobabilitymassisplacedoneachxvalue.Thejointpmfoftwodiscreterv’sXandYdescribeshowmuchprobabilitymassisplacedoneachpossiblepairofvalues(x,y).Example2Whentwofairdicearerolledinanhonestmanner,letY=(Y1,Y2),Y1----thenumbershownonfirstdice,Y2---thenumbershownonseconddice.Example3Aboxhassixtickets,labeledfrom1to6.Twoticketsareselectedfromtheboxbysamplingwithoutreplacement.LetX=(X1,X2),X1,X2,respectively,denotethelabelsofthefirstandthesecondticketsoselected.Example1wewanttostudythedistributionofpeople’sheightandweight,letX=(X1,X2),X1---theheightofpeople,X2---theweightofpeople.LetAbeanysetconsistingofpairsof(x,y)values.ThentheprobabilityisobtainedbysummingthejointpmfoverpairsinA:DEFINITION
LetXandYbetwodiscreterv’sdefinedonthesamplespaceSofanexperiment.Thejointprobabilitymassfunction
p(x,y)isdefinedforeachpairofnumbers(x,y)byp(x,y)=P(X=xandY=y)Afunctionp(x,y)canbeusedasajointpmfprovidedthatforallxandyand
Example
Whentwofairdicearerolledinanhonestmanner,letY=(Y1,Y2),Y1----thenumbershownonfirstdice,Y2---thenumbershownonseconddice.Y2Y112345611/361/361/361/361/361/3621/361/361/361/361/361/3631/361/361/361/361/361/3641/361/361/361/361/361/3651/361/361/361/361/361/3661/361/361/361/361/361/36X=thedeductibleamountonautopolicyandY=thedeductibleamountonhomeowner’spolicy.Example5.1p(x,y)X10025002000.05.15.30YDEFINITIONThemarginalprobabilitymass
functionsofXandofY,denotedbyand,respectively,aregivenbyThepmfofoneofthevariablesaloneisobtainedbysummingp(x,y)overvaluesoftheothervariable.Theresultiscalledamarginalpmfbecausewhenthep(x,y)valuesappearinarectangulartable,thesumsarejustmarginal(roworcolumn)totals.Y2Y1123456Pi.11/361/361/361/361/361/3621/361/361/361/361/361/3631/361/361/361/361/361/3641/361/361/361/361/361/3651/361/361/361/361/361/3661/361/361/361/361/361/36p.jExample5.2(Example5.1continued)
ThepossibleXvaluesarex=100andx=250,socomputingrowtotalsinthejointprobabilitiestableyieldsThemarginalpmfofXisthenand
Similarly,themarginalpmfofYisobtainedfromcolumntotalsassoasbefore.ExampleTherearethreewhiteballsandthreeredballs,putthemintothreeboxes,theboxesarelabeled1,2,3.LetXdenotethenumberofwhiteballsinfirstbox,Ydenotethenumberofredballsinsecondbox.Determinejointprobabilitydistributionof(X,Y)XY0123012364/72996/72948/7298/72996/72916/818/8112/72948/7298/814/816/7298/72912/7296/7291/729Example5Putthreeballs(theseballsareundistinguished)intothreeboxes,whichlabeled1,2,3.LetXdenotethenumberofballsinthefirstbox,Ydenotethenumberofballsinthesecondbox.Determinethejointprobabilitydistributionof(X,Y).XY012301/271/91/91/2711/92/91/9021/91/90031/27000Exercise1:Twocardsaredrawnfromaspecialdeckconsistingoftwoheartsandtwodiamonds,andtheyareplacedfacedowninfrontofus.Thetwocardsarethenturnedoverandtheirsuitsareobserved.LetX1andX2bedefinedasfollows:X1X20101/61/311/31/6DeterminethejointprobabilitydistributionofX=(X1,X2)TheJointProbabilityDensityFunctionforTwoContinuousRandomVariablesDEFINITIONLetXandYbecontinuousrv’s.Thenf(x,y)isthejointprobabilitydensityfunctionforXandYifforanytwo-dimensionalsetAInparticular,ifAistwo-dimensionalrectanglethenForf(x,y)tobeacandidateforajointpdf,itmustsatisfy.ThenisthevolumeunderneaththissurfaceandabovetheregionA,analogoustotheareaunderacurveintheone-dimensionalcase.ThisisillustratedinFigure5.1.f(x,y)xySurfacef(x,y)A=Shadedrectangle
Wecanthinkoff(x,y)asspecifyingasurfaceatheightf(x,y)abovethepoint(x,y)inathree-dimensionalcoordinatesystem.Toverifythatthisisalegitimatepdf,notethatandExample5.3Supposethejointpdfof(X,Y)isgivenbyExampleThepdfofvector(X,Y)isgivenbyDetermine:(1)theconstantc
(2)theprobability
P{(X,Y)∈G}G11x+y=1Solution:(1)(2)G11x+y=1Example:Thepdfforthevector(X,Y)whosecomponentsarepositiverandomvariablesisgivenbyDeterminetheprobabilitythatY>X.Solution:
DefinitionThemarginalprobabilitydensityfunctionsofXandY,denotedbyand,respectively,aregivenbyAswithjointpmf’s,fromthejointpdfofXandY,eachofthetwoMarginaldensityfunctionscanbecomputed.Example:ThepdfofXandYisgivenbyDeterminethemarginaldensityfunctions.Solution:Example:Supposethepdfofrandomvector(X,Y)isgivenby:Determine(1)themarginaldensityfunctionsfX(x),fY(y)
(2)theprobabilityofP{X+Y>1},P{Y>X}(1)Themarginaldensityfunctionare:SoSimilarlySolution:(2)Computertheprobability121x+y=1D00121y=xG0Exercise1:Theprobabilitydensityfunctionforthecontinuousrandomvector(X,Y)isgivenbyDeterminethemarginaldensityfunctionsfX(x),fY(y)Exercise2:Theprobabilitydensityfunctionforthecontinuousrandomvector(X,Y)isgivenbyDeterminethemarginaldensityfunctionsfX(x),fY(y)CalculatetheprobabilitythatX>2YIndependentrandomvariables
Inchapter2wepointedoutthatonewayofdefiningindependenceoftwoeventsistosaythatAandBareindependentif.Wenowuseananalogousdefinitionfortheindependenceoftworv’s.orDEFINITIONTworandomvariablesXandYaresaidtobeindependentifforeverypairofxandyvaluesotherwiseisnotsatisfiedforall(x,y),thenXandYaresaidtobedependent.whenXandYarecontinuouswhenXandYarediscreteExample5.6IntheinsurancesituationofExample5.1and5.2,soXandYarenotindependent.Example5.8Supposethatthelifetimesoftwocomponentsareindependentofoneanotherandthatthefirstlifetime,,hasanexponentialdistributionwithparameterwhereasthesecond,,hasanexponentialdistributionwithparameter.ThenthejointpdfisLet=1/1000and=1/1200,sothattheexpectedlifetimesare1000hoursand1200hours,respectively.Theprobabilitythatbothcomponentlifetimesareatleast1500hoursisExpectedValues,Covariance,andCorrelation5.2PROPOSITION
LetXandYbejointlydistributedrv’swithpmfp(x,y)accordingtowhetherthevariablesarediscreteorcontinuous.Thentheexpectedvalueofafunctionh(X,Y),denotedbyE[h(X,Y)]orμh(X,Y),isgivenbyE[h(X,Y)]Example5.13
Fivefriendshavepurchasedticketstoacertainconcert.Iftheticketsareforseats1-5inaparticularrowandtheticketsarerandomlydistributedamongthefive,whatistheexpectednumberofseatsseparatinganyparticulartwoofthefive?LetXandYdenotetheseatnumberofthefirstandsecondindividuals,respectively.Possible(X,Y)pairsare{(1,2),(1,3),…,(5,4)},andthejointpmfof(X,Y)is
Thenumberofseatsseparatingthetwoindividualsish(X,Y)=|X-Y|-1.Theaccompanyingtablegivesh(X,Y)foreachpossible(x,y)pair.--h(x,y)Y15432X12345--30120--0121001210--03210--Thus,CovarianceWhentworandomvariablesXandYarenotindependent,itisfrequentlyofinteresttoassesshowstronglytheyarerelatedtooneanother;DEFINITONThe
covariancebetweentworv’sXandYisExample5.15Thejointandmarginalpmf’sforX=automobilepolicydeductibleamountandY=homeownerpolicydeductibleamountinExample5.1wereyp(x,y)x10025002000.05.15.30250.5xpX(x)100250.5.5ypY(y)100.250.25FromwhichμX=∑xpX(x)=175andμY=125.Therefore.PROPOSITION
ThefollowingshortcutformulaforCov(X,Y)simplifiesthecomputations.IftheXiareindependent,then,andwehaveanothercorollary.
IftheXiareindependent,
thenExample5.16
Thejointandmarginalpdf’sX=amountofandY=amountofcashewswereWithfY(y)obtainedbyreplacingxbyyinfX(x).ItiseasilyverifiedthatμX=
μY=2/5,and
ThusCov(X,Y)=2/15-(2/5)2=2/15-4/25=-2/75.
ExampleSupposearandomvariableXBin(12,0.5),andanotherrandomvariableYN(0,1),COV(X,Y)=-1,findvarianceandcovarianceofV=4X+3Y+1andW=-2X+4YExample:LetXhavethebinomialdistributionwithparametersn,p,determineV(X).Solution:becauseabinomialdistributionisnBernoullidistribution,andaBernoullidistributionisXi01PqpBecauseX1,X2,…,Xnareindependent,thenExample5.17ItiseasilyverifiedthatintheinsuranceproblemofExample5.15,E(X2)=36,250,σ2x=36,250-(175)2=5625,σX=75,E(Y2)=22,500,σ2y=6875,andσY=82.92.Thisgivesρ=1875/(75)(82.92)=.301CorrelationDEFINITION
ThecorrelationcoefficientofXandY,denotedbyCorr(X,Y),orjust,isdefinedbyPROPOSITION1.Ifaandcareeitherbothpositiveorbothnegative
Corr(aX+b,cY+d)=Corr(X,Y)2.Foranytworv’sXandY,-1≤Corr(X,Y)≤1.PROPOSITION1.IfXandYareindependent,thenρ=0,butρ=0doesnotimplyindependence.2.ρ=1or–1iffY=aX+bforsomenumbersaandbwitha≠0Example5.18
LetXandYbediscreterv’swithjointpmfHowever,thetwovariablesarecompletelydependent.Althoughthereisperfectdependence,thereisalsocompleteabsenceofanylinearrelationship!5.3
StatisticsandTheirDistributions
TheobservationsinasinglesampleweredenotedinChapter1byx1,x2,…,xn.Considerselectingtwodifferentsamplesofsizenfromthesamepopulationdistribution.Thexi’sinthesecondsamplewillvirtuallyalwaysdifferatleastabitfromthoseinthefirstsample.
Forexample,afirstsampleofn=3carsofaparticulartypemightresultinfuelefficienciesx1=30.7,x2=29.4,x3=31.1,whereasasecondsamplemaygivex1=28.8,x2=30.0,andx3=31.1.Beforeweobtaindata,thereisuncertaintyaboutthevalueofeachxi.Becauseofthisuncertainty,beforethedatabecomesavailablewevieweachobservationasarandomvariableanddenotethesamplebyX1,X2,…,Xn
(uppercaselettersforrandomvariables).
Thisvariationinobservedvaluesinturnimpliesthatthevalueofanyfunctionofthesampleobservations,suchasthesamplemean,samplestandarddeviation,orsamplefourthspread,alsovariesfromsampletosample.Thatis,priortoobtainingx1,…,xn
,thereisuncertaintyastothevalueofx,thevalueofs,andsoon.DEFINITIONAstatisticisanyquantitywhosevaluecanbecalculatedfromsampledata.Priortoobtainingdata,thereisuncertaintyastowhatvalueofanyparticularstatisticwillresult.astatisticisarandomvariableandwillbedenotedbyanuppercaseletter;
alowercaseletterisusedtorepresentthecalculatedorobservedvalueofthestatistic.RandomSamplesTheprobabilitydistributionofanyparticularstatisticdependsnotonlyonthepopulationdistribution(normal,uniform,etc.)andthesamplesizenbutalsoonthemethodofsampling.DEFINITION
Therv’sX1,X2,…,Xn
aresaidtoforma(simple)randomsampleofsizenif1.TheXi’sareindependentrv’s.2.EveryXihasthesameprobabilitydistribution.DerivingtheSamplingDistributionofaStatistic
Probabilityrulescanbeusedtoobtainthedistributionofastatisticprovidedthatitisa“fairlysimple”functionoftheXi’sandeithertherearerelativelyfewdifferentXvaluesinthepopulationorelsethepopulationdistributionhasa“nice”form.Thesecondmethodofobtaininginformationaboutastatistic’ssamplingdistributionistoperformasimulationexperiment.Thismethodisusuallyusedwhenaderivationviaprobabilityrulesistoodifficultorcomplicatedtobecarriedout.Suchanexperimentisvirtuallyalwaysdonewiththeaidofacomputer.Thefollowingcharacteristicsofanexperimentmustbespecified:Thestatisticofinterest(,S,aparticulartrimmedmean,etc.)2.Thepopulationdistribution(normalwithμ=100andσ=15,uniformwithlowerlimitA=5andupperlimitB=10,etc)SimulationExperiments(omit)3.Thesamplesizen(e.g.,n=10orn=50)4.Thenumberofreplicationk(e.g.,k=500)Thenuseacomputertoobtainkdifferentrandomsamples,eachofsizen,fromthedesignatedpopulationdistribution.Foreachsuchsample,calculatethevalueofthestatisticandconstructahistogramofthekcalculatedvalues.Thishistogramgivestheapproximatesamplingdistributionofthestatistic.Thelargerthevalueofk,thebettertheapproximationwilltendtobe(theactualsamplingdistributionemergesask→∞).Inpractice,k=500or1000isusuallyenoughifthestatisticis“fairlysimple”.Example5.23Considerasimulationexperimentinwhichthepopulationdistributionisquiteskewed.Figure5.12showsthedensitycurveofacertaintypeofelectroniccontrol(thatisactuallyalognormaldistributionwithE(ln(X))=3andV(ln(X)))=.4).Againthestatisticofinterestisthesamplemean.Theexperimentutilized500replicationsandconsideredthesamefoursamplesizesasinExample5.22.TheresultinghistogramsAlongwithanormalprobabilityplotfromMINITABforthe500valuesbasedonn=30areshowninFigure5.13).f(x)x0255075.01.03.02Figure5.12DensitycurveforthesimulationexperimentofExample5.23[E(X)=μ=21.7584,V(X)=σ2=82.1449]PROPOSITION5.4TheDistributionoftheSampleMeanIfthesamplesizeincreaseston=100,E(X)isunchanged,butσX=500,halfofitspreviousvalue(thesamplesizemustbequadrupledtohalvethestandarddeviationofX).Example5.24Inanotchedtensilefatiguetestonatitaniumspecimen,theexpectednumberofcyclestofirstacousticemission(usedtoindicatecrackinitiation)isμ=28,000,andthestandarddeviationofthenumberofcyclesisσ=5000.LetX1,X2,…,X25bearandomsampleofsize25,whereeachXiisthenumberofcyclesonadifferentrandomlyselectedspecimen.ThentheE(X)=μ=28,000,andtheexpectedtotalnumberofcyclesforthe25specimensisE(T0)=nμ=25(28,000)=700,000.ThestandarddeviationsofXandT0areTheCaseofaNormalPopulationDistributionLookingbacktothesimulationexperimentofExample5.22,weseethatwhenthepopulationdistributionisnormal,eachhistogramofXvaluesiswellapproximatedbyanormalcurve.Thepreciseresultfollows.PROPOSITIONForNormalpopulation,Example5.25Thetimethatittakesarandomlyselectedratofacertainsubspeciestofinditswaythroughamazeisanormallydistributedrvwithμ=1.5minandσ=.35min.Supposefiveratsareselected.THEOREMTheCentralLimitTheorem(CLT)TheCentralLimitTheoremForIfn>30,theCLTcanbeusedExample5.26Whenabatchofacertainchemicalproductisprepared,theamountofaparticularimpurityinthebatchisarandomvariablewithmeanvalue4.0gandstandarddeviation1.5g.If50batchesareindependentlyprepared,whatisthe(approximate)probabilitythatthesampleaverageamountofimpurityisbetween3.5and3.8g?Accordingtotheruleofthumbtobestatedshortly,n=50islargeenoughfortheCLTtobeapplicable.thenhasapproximatelyanormaldistributionwithmeanvalueandsoOtherApplicationsoftheCentralLimitTheorem(omit)TheCLTcanbeusedtojustifythenormalapproximationtothebinomialdistributiondiscussedinChapter4.PROPOSITIONLetX1,X2,…,Xn
bearandomsamplefromadistributionforwhichonlypositivevaluesarepossible[P(Xi>0)=1].Thenifnissufficientlylarge,theproductY=X1X2…..Xnhasapproximatelyalognormaldistribution.Toverifythis,notethat
ln(Y)=ln(X1)+ln(X2)+….+ln(Xn)TheDistributionofaLinearCombination5.5DefinitionPROPOSITIONWhetherornottheXi’sareindependent,IfX1,X2,…,Xnareindependent,3.ForanyX1,X2,…,Xn,andExample5.28Agasstationsellsthreegradesofgasoline:regularunleaded,extraunleaded,andsuperunleaded.Thesearepricedat$1.20,$1.35,and$1.50pergallon,respectively.LetX1,X2andX3denotetheamountsofthesegradespurchased(gallon)onaparticularday.SupposetheXi’sareindependentwithμ1=1000,μ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度模具行業(yè)人才培養(yǎng)與交流協(xié)議模板
- 二零二五年度工業(yè)用地土地出租環(huán)保安全協(xié)議
- 新型能源設(shè)備安裝及維護協(xié)議
- 共享農(nóng)產(chǎn)品批發(fā)市場的買賣雙方合同
- 煤炭租賃合同
- 數(shù)字醫(yī)療健康平臺推廣合作協(xié)議
- 多功能餐廳運營合同
- 餐飲行業(yè)食品安全承諾書與免責協(xié)議
- 專業(yè)資質(zhì)認證服務(wù)合同書
- 高考英語題組限時訓練含答案解析
- 2024年河北石家莊同濟醫(yī)學中等專業(yè)學校招聘教師考試真題
- 2025年河南工業(yè)職業(yè)技術(shù)學院單招職業(yè)技能測試題庫審定版
- 施工現(xiàn)場應(yīng)對極端天氣的措施
- 江蘇2025年01月江蘇省揚州生態(tài)科技新城管委會2025年招考6名勞務(wù)派遣人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年內(nèi)蒙古呼倫貝爾農(nóng)墾拉布大林上庫力三河蘇沁農(nóng)牧場招聘115人歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 中學創(chuàng)客教育教學活動計劃
- 《移動通信市場推廣策略》課件
- 2025年四川成都職業(yè)技術(shù)學院招聘筆試參考題庫含答案解析
- 2025年國家藥品監(jiān)督管理局藥品審評中心招聘11人歷年高頻重點提升(共500題)附帶答案詳解
- 2024年廣東省《輔警招聘考試必刷500題》考試題庫含必背答案
- 餐飲企業(yè)牛奶產(chǎn)品推廣方案
評論
0/150
提交評論