高等代數(shù)課件 第1章 行列式 1.1 排列_第1頁
高等代數(shù)課件 第1章 行列式 1.1 排列_第2頁
高等代數(shù)課件 第1章 行列式 1.1 排列_第3頁
高等代數(shù)課件 第1章 行列式 1.1 排列_第4頁
高等代數(shù)課件 第1章 行列式 1.1 排列_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

用消元法解二元線性方程組一行列式問題的引入

1、二階行列式的引入方程組的解為由方程組的四個(gè)系數(shù)確定.

由四個(gè)數(shù)排成二行二列(橫排稱行、豎排稱列)的數(shù)表定義即主對(duì)角線副對(duì)角線對(duì)角線法則二階行列式的計(jì)算若記對(duì)于二元線性方程組系數(shù)行列式則二元線性方程組的解為注意

分母都為原方程組的系數(shù)行列式.例1解2、三階行列式定義記(6)式稱為數(shù)表(5)所確定的三階行列式.(1)沙路法三階行列式的計(jì)算.列標(biāo)行標(biāo)(2)對(duì)角線法則注意

紅線上三元素的乘積冠以正號(hào),藍(lán)線上三元素的乘積冠以負(fù)號(hào).說明1

對(duì)角線法則只適用于二階與三階行列式.

如果三元線性方程組的系數(shù)行列式

利用三階行列式求解三元線性方程組

2.

三階行列式包括3!項(xiàng),每一項(xiàng)都是位于不同行,不同列的三個(gè)元素的乘積,其中三項(xiàng)為正,三項(xiàng)為負(fù).若記或記即得得則三元線性方程組的解為:例2

解按對(duì)角線法則,有例3解方程左端例4

解線性方程組解由于方程組的系數(shù)行列式同理可得故方程組的解為:

二階和三階行列式是由解二元和三元線性方程組引入的.對(duì)角線法則二階與三階行列式的計(jì)算3、小結(jié)二數(shù)碼排列

1、概念的引入引例用1、2、3三個(gè)數(shù)字,可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?解123123百位3種放法十位1231個(gè)位1232種放法1種放法種放法.共有2、全排列及其逆序數(shù)問題定義把個(gè)不同的元素排成一列,叫做這個(gè)元素的全排列(或排列).

個(gè)不同的元素的所有排列的種數(shù),通常用表示.由引例同理

在一個(gè)排列中,若數(shù)則稱這兩個(gè)數(shù)組成一個(gè)逆序.例如排列32514中,定義

我們規(guī)定各元素之間有一個(gè)標(biāo)準(zhǔn)次序,n個(gè)不同的自然數(shù),規(guī)定由小到大為標(biāo)準(zhǔn)次序.排列的逆序數(shù)32514逆序逆序逆序定義

一個(gè)排列中所有逆序的總數(shù)稱為此排列的逆序數(shù).例如排列32514中,32514逆序數(shù)為31故此排列的逆序數(shù)為3+1+0+1+0=5.計(jì)算排列逆序數(shù)的方法方法1分別計(jì)算出排在前面比它大的數(shù)碼之和即分別算出這個(gè)元素的逆序數(shù),這個(gè)元素的逆序數(shù)的總和即為所求排列的逆序數(shù).逆序數(shù)為奇數(shù)的排列稱為奇排列;逆序數(shù)為偶數(shù)的排列稱為偶排列.排列的奇偶性分別計(jì)算出排列中每個(gè)元素前面比它大的數(shù)碼個(gè)數(shù)之和,即算出排列中每個(gè)元素的逆序數(shù),這每個(gè)元素的逆序數(shù)之總和即為所求排列的逆序數(shù).方法2例1

求排列32514的逆序數(shù).解在排列32514中,3排在首位,逆序數(shù)為0;2的前面比2大的數(shù)只有一個(gè)3,故逆序數(shù)為1;32514于是排列32514的逆序數(shù)為5的前面沒有比5大的數(shù),其逆序數(shù)為0;1的前面比1大的數(shù)有3個(gè),故逆序數(shù)為3;4的前面比4大的數(shù)有1個(gè),故逆序數(shù)為1;例2

計(jì)算下列排列的逆序數(shù),并討論它們的奇偶性.解此排列為偶排列.解當(dāng)時(shí)為偶排列;當(dāng)時(shí)為奇排列.解當(dāng)為偶數(shù)時(shí),排列為偶排列,當(dāng)為奇數(shù)時(shí),排列為奇排列.3、對(duì)換的定義定義在排列中,將任意兩個(gè)元素對(duì)調(diào),其余元素不動(dòng),這種作出新排列的手續(xù)叫做對(duì)換.將相鄰兩個(gè)元素對(duì)調(diào),叫做相鄰對(duì)換.例如4、對(duì)換與排列的奇偶性的關(guān)系定理1

一個(gè)排列中的任意兩個(gè)元素對(duì)換,排列改變奇偶性.證明設(shè)排列為對(duì)換與除外,其它元素的逆序數(shù)不改變.當(dāng)時(shí),的逆序數(shù)不變;經(jīng)對(duì)換后的逆序數(shù)增加1,經(jīng)對(duì)換后的逆序數(shù)不變,的逆序數(shù)減少1.因此對(duì)換相鄰兩個(gè)元素,排列改變奇偶性.設(shè)排列為當(dāng)時(shí),現(xiàn)來對(duì)換與次相鄰對(duì)換次相鄰對(duì)換次相鄰對(duì)換所以一個(gè)排列中的任意兩個(gè)元素對(duì)換,排列改變奇偶性.推論奇排列調(diào)成標(biāo)準(zhǔn)排列的對(duì)換次數(shù)為奇數(shù),偶排列調(diào)成標(biāo)準(zhǔn)排列的對(duì)換次數(shù)為偶數(shù).定理2

階行列式也可定義為其中為行標(biāo)排列的逆序數(shù).證明

由定理1知對(duì)換的次數(shù)就是排列奇偶性的變化次數(shù),而標(biāo)準(zhǔn)排列是偶排列(逆序數(shù)為0),因此知推論成立.證明按行列式定義有記對(duì)于D中任意一項(xiàng)總有且僅有中的某一項(xiàng)與之對(duì)應(yīng)并相等;反之,對(duì)于中任意一項(xiàng)也總有且僅有D中的某一項(xiàng)與之對(duì)應(yīng)并相等,于是D與中的項(xiàng)可以一一對(duì)應(yīng)并相等,從而例2

在六階行列式中,下列兩項(xiàng)各應(yīng)帶什么符號(hào).解431265的逆序數(shù)為所以前邊應(yīng)帶正號(hào).行標(biāo)排列341562的逆序數(shù)為列標(biāo)排列234165的逆序數(shù)為所以前邊應(yīng)帶正號(hào).例3

用行列式的定義計(jì)算解

1.一個(gè)排列中的任意兩個(gè)元素對(duì)換,排列改變奇偶性.2.行列式的三種表示方法三、小結(jié)其中是兩個(gè)級(jí)排列,為行標(biāo)排列逆序數(shù)與列標(biāo)排列逆序數(shù)的和.思考題證明在全部階排列中,奇偶排列各占一半.思考題解答證

設(shè)在全部階

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論