2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省深圳市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定

2.A.A.

B.

C.

D.

3.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿(mǎn)足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1

4.

5.A.-2(1-x2)2+C

B.2(1-x2)2+C

C.

D.

6.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)

B.f(x)在點(diǎn)x0必定不可導(dǎo)

C.

D.

7.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件

8.

9.

10.

11.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散

12.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1

13.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

14.

A.2B.1C.1/2D.0

15.

16.

17.曲線(xiàn)y=x2+5x+4在點(diǎn)(-1,0)處切線(xiàn)的斜率為

A.2B.-2C.3D.-3

18.設(shè)曲線(xiàn)y=x-ex在點(diǎn)(0,-1)處與直線(xiàn)l相切,則直線(xiàn)l的斜率為().A.A.∞B.1C.0D.-1

19.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

20.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

二、填空題(20題)21.

22.

23.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

24.若函數(shù)f(x)=x-arctanx,則f'(x)=________.

25.

26.

27.

28.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

29.

30.

31.

32.

33.曲線(xiàn)f(x)=x/x+2的鉛直漸近線(xiàn)方程為_(kāi)_________。

34.

35.

36.設(shè)函數(shù)y=x3,則y'=________.

37.

38.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

39.

40.

三、計(jì)算題(20題)41.求微分方程的通解.

42.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).

44.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.

45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

46.

47.

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.

50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

51.求微分方程y"-4y'+4y=e-2x的通解.

52.

53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

54.

55.

56.

57.

58.證明:

59.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

四、解答題(10題)61.

62.

63.

64.

65.

66.

67.

68.

69.計(jì)算∫tanxdx。

70.設(shè)y=(1/x)+ln(1+x),求y'。

五、高等數(shù)學(xué)(0題)71.x→0時(shí),1一cos2x與

等價(jià),則a=__________。

六、解答題(0題)72.

參考答案

1.C

2.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。

3.D

4.D解析:

5.C

6.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

7.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件

8.D

9.B

10.B

11.C解析:

12.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.

13.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

14.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).

15.A

16.C解析:

17.C解析:

18.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線(xiàn)y=x-ex在點(diǎn)(0,-1)處切線(xiàn)斜率為0,因此選C.

19.A

20.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

21.

22.

23.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

24.x2/(1+x2)本題考查了導(dǎo)數(shù)的求導(dǎo)公式的知識(shí)點(diǎn)。

25.

26.

27.3yx3y-13yx3y-1

解析:

28.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

29.

解析:

30.

本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

31.2.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

能利用洛必達(dá)法則求解.

如果計(jì)算極限,應(yīng)該先判定其類(lèi)型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.

檢查是否滿(mǎn)足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.

32.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),

33.x=-2

34.1/21/2解析:

35.

36.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

37.

38.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。

39.由可變上限積分求導(dǎo)公式可知

40.

41.

42.

43.

列表:

說(shuō)明

44.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.

因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)

(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為

45.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

46.

47.

48.由二重積分物理意義知

49.

50.由等價(jià)無(wú)窮小量的定義可知

51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論