版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年吉林省松原市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
2.
3.
4.下列關(guān)系式中正確的有()。A.
B.
C.
D.
5.
6.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
7.A.等價(jià)無(wú)窮小
B.f(x)是比g(x)高階無(wú)窮小
C.f(x)是比g(x)低階無(wú)窮小
D.f(x)與g(x)是同階但非等價(jià)無(wú)窮小
8.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C
9.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
10.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是
A.xo為f(x)的極大值點(diǎn)
B.xo為f(x)的極小值點(diǎn)
C.xo不為f(x)的極值點(diǎn)
D.xo可能不為f(x)的極值點(diǎn)
11.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
12.
13.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
14.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線15.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)
16.
17.
18.
19.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/220.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
21.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
22.A.2B.2xC.2yD.2x+2y
23.A.-1
B.1
C.
D.2
24.
25.
26.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-227.則f(x)間斷點(diǎn)是x=()。A.2B.1C.0D.-1
28.
29.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.130.A.A.
B.
C.
D.
31.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
32.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
33.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
34.
35.A.A.0B.1C.2D.336.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
37.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
38.
39.
40.
41.A.A.>0B.<0C.=0D.不存在42.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)43.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
44.
45.A.A.
B.
C.
D.
46.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
47.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
48.
49.
50.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
二、填空題(20題)51.曲線y=x/2x-1的水平漸近線方程為_(kāi)_________。
52.53.∫(x2-1)dx=________。54.55.56.
57.
58.
59.
60.
61.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分
62.
63.直線的方向向量為_(kāi)_______。
64.
65.
66.
67.68.
69.設(shè)f(x)=1+cos2x,則f'(1)=__________。
70.三、計(jì)算題(20題)71.求曲線在點(diǎn)(1,3)處的切線方程.72.
73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.75.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
76.
77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.求微分方程的通解.80.證明:81.82.83.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.84.
85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
86.求微分方程y"-4y'+4y=e-2x的通解.
87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
88.
89.
90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.設(shè)ex-ey=siny,求y'。
93.
94.
95.
96.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.已知同上題若產(chǎn)品以每件500元出售,問(wèn):要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件?
六、解答題(0題)102.
參考答案
1.C
2.C
3.D
4.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此
可知應(yīng)選B。
5.A
6.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于,可知f'(a)=-1,因此選A.
由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.
7.D
8.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
9.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
10.A
11.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),
曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,
12.B
13.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
14.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
15.A
16.A解析:
17.B解析:
18.A
19.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.
當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
可知f'(1)=1/4,故應(yīng)選B.
20.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
21.A
22.A
23.A
24.B
25.C解析:
26.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
27.Df(x)為分式,當(dāng)X=-l時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)x=-1為f(x)的間斷點(diǎn),故選D。
28.B
29.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
30.C
31.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
32.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。
33.C
34.C解析:
35.B
36.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
37.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
38.A解析:
39.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
40.B解析:
41.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。
42.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).
極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).
43.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
44.C
45.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
46.D
47.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
48.C解析:
49.B解析:
50.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
51.y=1/2
52.e2
53.
54.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
55.
56.1本題考查了收斂半徑的知識(shí)點(diǎn)。
57.
58.
59.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項(xiàng)為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
60.(1/2)x2-2x+ln|x|+C61.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
62.63.直線l的方向向量為
64.2
65.2
66.67.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.
68.
69.-2sin270.3yx3y-171.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
72.
則
73.
74.
75.
76.
77.由二重積分物理意義知
78.
列表:
說(shuō)明
79.
80.
81.
82.
83.函數(shù)的定義域?yàn)?/p>
注意
84.由一階線性微分方程通解公式有
85.由等價(jià)無(wú)窮小量的定義可知
86.解:原方程對(duì)應(yīng)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 孕婦用品售后服務(wù)模式創(chuàng)新-洞察分析
- 網(wǎng)絡(luò)廣告?zhèn)惱韱?wèn)題-洞察分析
- 醫(yī)療信息化應(yīng)用分析-洞察分析
- 移動(dòng)學(xué)習(xí)行為分析-洞察分析
- 藥品質(zhì)量控制方法-洞察分析
- 特色農(nóng)產(chǎn)品冷鏈技術(shù)-洞察分析
- 移動(dòng)醫(yī)療與遠(yuǎn)程教育-洞察分析
- 虛擬現(xiàn)實(shí)在網(wǎng)頁(yè)設(shè)計(jì)中的優(yōu)勢(shì)-洞察分析
- 循環(huán)利用產(chǎn)業(yè)鏈構(gòu)建-洞察分析
- 云端網(wǎng)絡(luò)功能虛擬化-洞察分析
- 2025蛇年元旦晚會(huì)
- 【MOOC】中國(guó)近現(xiàn)代史綱要-武漢理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 綜合管廊知識(shí)
- 四川省南充市2023-2024學(xué)年高一上學(xué)期期末考試 歷史 含解析
- 餐飲業(yè)食品安全管理操作手冊(cè)
- 2024-2025學(xué)年湖北省武漢市華中師大一附中高三上學(xué)期期中英語(yǔ)試題及答案
- 2025年公司半年工作總結(jié)及下半年工作計(jì)劃
- 2024年光伏電站運(yùn)行專業(yè)知識(shí)題庫(kù)
- 國(guó)開(kāi)(內(nèi)蒙古)2024年《漢語(yǔ)中的中國(guó)文化》形成性考核1-3終結(jié)性考核答案
- 《PDCA培訓(xùn)資料》課件
- 2024年區(qū)域代理經(jīng)營(yíng)協(xié)議
評(píng)論
0/150
提交評(píng)論