




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年吉林省白城市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(40題)1.
2.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面
3.圖示為研磨細(xì)砂石所用球磨機(jī)的簡(jiǎn)化示意圖,圓筒繞0軸勻速轉(zhuǎn)動(dòng)時(shí),帶動(dòng)筒內(nèi)的許多鋼球一起運(yùn)動(dòng),當(dāng)鋼球轉(zhuǎn)動(dòng)到一定角度α=50。40時(shí),它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時(shí)圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
4.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.4
5.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
6.
7.
8.
9.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
10.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面
11.()。A.
B.
C.
D.
12.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
13.
14.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
15.lim(x2+1)=
x→0
A.3
B.2
C.1
D.0
16.
17.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時(shí)針方向B.30N·m,順時(shí)針方向C.60N·m,逆時(shí)針方向D.60N·m,順時(shí)針方向
18.
19.平衡積分卡控制是()首創(chuàng)的。
A.戴明B.施樂公司C.卡普蘭和諾頓D.國(guó)際標(biāo)準(zhǔn)化組織
20.
21.
A.0
B.cos2-cos1
C.sin1-sin2
D.sin2-sin1
22.A.-cosxB.-ycosxC.cosxD.ycosx
23.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
24.
A.(-2,2)
B.(-∞,0)
C.(0,+∞)
D.(-∞,+∞)
25.
26.若,則()。A.-1B.0C.1D.不存在
27.
28.
29.
30.前饋控制、同期控制和反饋控制劃分的標(biāo)準(zhǔn)是()
A.按照時(shí)機(jī)、對(duì)象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對(duì)象的全面性劃分
31.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
32.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
33.
A.2x+1B.2xy+1C.x2+1D.2xy
34.A.有一個(gè)拐點(diǎn)B.有三個(gè)拐點(diǎn)C.有兩個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)
35.
36.A.A.
B.
C.
D.
37.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)化。
A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)
38.
39.
40.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1二、填空題(50題)41.
42.設(shè),則f'(x)=______.
43.冪級(jí)數(shù)的收斂半徑為______.
44.微分方程xy'=1的通解是_________。45.
46.47.二元函數(shù)z=x2+y2+1的極小值為_______.
48.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.過原點(diǎn)且與直線垂直的平面方程為______.
60.
61.
62.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
63.過點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.64.65.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無(wú)窮小,則a=________。66.
67.
68.
69.
70.ylnxdx+xlnydy=0的通解是______.
71.
72.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為________。
73.
74.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
75.
76.
77.
78.
79.80.
81.
82.
則F(O)=_________.
83.設(shè)z=xy,則dz=______.
84.設(shè)y=2x2+ax+3在點(diǎn)x=1取得極小值,則a=_____。
85.
86.
87.
88.89.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.
90.
三、計(jì)算題(20題)91.求微分方程y"-4y'+4y=e-2x的通解.
92.
93.求曲線在點(diǎn)(1,3)處的切線方程.
94.
95.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.96.將f(x)=e-2X展開為x的冪級(jí)數(shù).97.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則98.證明:99.100.101.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.102.
103.
104.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
105.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).106.107.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.108.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.109.求微分方程的通解.
110.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)111.112.
113.
114.求微分方程y'-(1/x)y=-1的通解。
115.
116.
117.
118.
119.
120.五、高等數(shù)學(xué)(0題)121.∫(2xex+1)dx=___________。
六、解答題(0題)122.
參考答案
1.A解析:
2.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
3.C
4.A由于可知收斂半徑R==1.故選A。
5.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
6.A解析:
7.D
8.D
9.C解析:佐證法是指通過尋找物證、人證來(lái)驗(yàn)證信息的可靠程度的方法。
10.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
11.D
12.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
13.A解析:
14.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
15.C
16.B解析:
17.D
18.B
19.C
20.D
21.A由于定積分
存在,它表示一個(gè)確定的數(shù)值,其導(dǎo)數(shù)為零,因此選A.
22.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
23.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
24.A
25.A
26.D不存在。
27.A解析:
28.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
29.C
30.A解析:根據(jù)時(shí)機(jī)、對(duì)象和目的來(lái)劃分,控制可分為前饋控制、同期控制和反饋控制。
31.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
32.C
33.B
34.D本題考查了曲線的拐點(diǎn)的知識(shí)點(diǎn)
35.D
36.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).
37.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)分。
38.C
39.B
40.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
41.1
42.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
43.344.y=lnx+C
45.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。
46.>147.1;本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
48.1
49.e
50.
本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
51.
52.x=2x=2解析:53.解析:
54.y=1/2y=1/2解析:
55.
56.
本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.
57.0
58.59.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
60.
61.e1/2e1/2
解析:
62.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。63.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.
由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.
所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或?qū)憺?x-y+z-5=0.
上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.
64.65.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。
66.1/2本題考查了對(duì)∞-∞型未定式極限的知識(shí)點(diǎn),
67.
68.2本題考查了定積分的知識(shí)點(diǎn)。
69.5/4
70.(lnx)2+(lny)2=C
71.3
72.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。
73.
解析:
74.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
75.(-21)(-2,1)
76.
77.
78.(e-1)2
79.
本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
80.1/6
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
81.4x3y
82.
83.yxy-1dx+xylnxdy
84.
85.86.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.
87.(-3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老顧聘用合同范本
- 先付款后供貨合同范本
- 保險(xiǎn)投資合同范本
- 加工生產(chǎn)勞務(wù)合同范本
- 京東物流折扣合同范本
- 上門電纜轉(zhuǎn)讓合同范例
- epc裝飾工程合同范本
- 代人取藥兼職合同范本
- 不賒銷合同范本模板
- 化肥銷售協(xié)議合同范本
- 數(shù)字電子技術(shù)(武漢科技大學(xué))知到智慧樹章節(jié)測(cè)試課后答案2024年秋武漢科技大學(xué)
- 綜合應(yīng)用能力事業(yè)單位考試(綜合管理類A類)試題及解答參考
- 阿爾茲海默病的家庭護(hù)理
- bim技術(shù)課件教學(xué)課件
- 腹水形成的原因及治療
- 單晶爐車間安全培訓(xùn)
- 高中地理必修第一冊(cè)期末試卷及答案-中圖版-2024-2025學(xué)年
- 護(hù)理核心制度測(cè)試題+參考答案
- 機(jī)械制造技術(shù)基礎(chǔ)(課程課件完整版)
- 《2023版CSCO卵巢癌診療指南》解讀課件
- 【醫(yī)院藥品管理系統(tǒng)探析與設(shè)計(jì)(論文)10000字】
評(píng)論
0/150
提交評(píng)論