必修直線的傾斜角與斜率_第1頁(yè)
必修直線的傾斜角與斜率_第2頁(yè)
必修直線的傾斜角與斜率_第3頁(yè)
必修直線的傾斜角與斜率_第4頁(yè)
必修直線的傾斜角與斜率_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

會(huì)計(jì)學(xué)1必修直線的傾斜角與斜率

笛卡兒1596年3月31日生于法國(guó)土倫省萊耳市的一個(gè)貴族之家,1650年2月11日卒于斯德哥爾摩。笛卡兒生平

笛卡兒的父親是布列塔尼地方議會(huì)的議員,同時(shí)也是地方法院的法官,笛卡兒在豪華的生活中無(wú)憂無(wú)慮地度過(guò)了童年。他幼年體弱多病,母親病故后就一直由一位保姆照看。他對(duì)周?chē)氖挛锍錆M了好奇,父親見(jiàn)他頗有哲學(xué)家的氣質(zhì),親昵地稱他為“小哲學(xué)家”。

父親希望笛卡兒將來(lái)能夠成為一名神學(xué)家,于是在笛卡兒八歲時(shí),便將他送入拉弗萊什的耶穌會(huì)學(xué)校,接受古典教育。校方為照顧他的孱弱的身體,特許他可以不必受校規(guī)的約束,早晨不必到學(xué)校上課,可以在床上讀書(shū)。因此,他從小養(yǎng)成了喜歡安靜,善于思考的習(xí)慣。第1頁(yè)/共26頁(yè)解析幾何的誕生

在笛卡兒所處的時(shí)代,代數(shù)還是一門(mén)比較新的科學(xué),幾何學(xué)的思維還在數(shù)學(xué)家的頭腦中占有統(tǒng)治地位。1637年,笛卡兒發(fā)表了《幾何學(xué)》,它確定了笛卡兒在數(shù)學(xué)史上的地位。

文藝復(fù)興使歐洲學(xué)者繼承了古希臘的幾何學(xué),也接受了東方傳入的代數(shù)學(xué)。利學(xué)技術(shù)的發(fā)展,使得用數(shù)學(xué)方法描述運(yùn)動(dòng)成為人們關(guān)心的中心問(wèn)題。笛卡兒分析了幾何學(xué)與代數(shù)學(xué)的優(yōu)缺點(diǎn),表示要去“尋求另外一種包含這兩門(mén)科學(xué)的好處,而沒(méi)有它們的缺點(diǎn)的方法”。

在《幾何學(xué)》卷一中,他用平面上的一點(diǎn)到兩條固定直線的距離來(lái)確定點(diǎn)的距離,用坐標(biāo)來(lái)描述空間上的點(diǎn)。他進(jìn)而創(chuàng)立了解析幾何學(xué),表明了幾何問(wèn)題不僅可以歸結(jié)成為代數(shù)形式,而且可以通過(guò)代數(shù)變換來(lái)實(shí)現(xiàn)發(fā)現(xiàn)幾何性質(zhì),證明幾何性質(zhì)。第2頁(yè)/共26頁(yè)

笛卡兒把幾何問(wèn)題化成代數(shù)問(wèn)題,提出了幾何問(wèn)題的統(tǒng)一作圖法。為此,他引入了單位線段,以及線段的加、減、乘、除、開(kāi)方等概念,從而把線段與數(shù)量聯(lián)系起來(lái),通過(guò)線段之間的關(guān)系,“找出兩種方式表達(dá)同一個(gè)量,這將構(gòu)成一個(gè)方程”,然后根據(jù)的解所表示的線段間的關(guān)系作圖。

在卷二中,笛卡兒用這種新方法解決帕普斯問(wèn)題時(shí),在平面上以一條直線為基線,為它規(guī)定一個(gè)起點(diǎn),又選定與之相交的另一條直線,它們分別相當(dāng)于x軸、原點(diǎn)、y軸,構(gòu)成一個(gè)斜坐標(biāo)系。那么該平面上任一點(diǎn)的位置都可以用(x,y)惟一地確定。帕普斯問(wèn)題就化成了一個(gè)含兩個(gè)未知數(shù)的二次不定方程。笛卡兒指出,方程的次數(shù)與坐標(biāo)系的選擇無(wú)關(guān),因此可以根據(jù)方程的次數(shù)將曲分類(lèi)。第3頁(yè)/共26頁(yè)

在平面直角坐標(biāo)系中,點(diǎn)用坐標(biāo)表示,直線如何表示呢?問(wèn)題引入xyOlP(x,y)

為了用代數(shù)方法研究直線的有關(guān)問(wèn)題,首先探索確定直線位置的幾何要素,然后在坐標(biāo)系中用代數(shù)方法把這些幾何要素表示出來(lái).問(wèn)題第4頁(yè)/共26頁(yè)

對(duì)于平面直角坐標(biāo)系內(nèi)的一條直線l,它的位置由哪些條件確定?問(wèn)題引入問(wèn)題xyOl第5頁(yè)/共26頁(yè)

我們知道,兩點(diǎn)確定一條直線.一點(diǎn)能確定一條直線的位置嗎?已知直線l經(jīng)過(guò)點(diǎn)P,直線l的位置能夠確定嗎?問(wèn)題引入問(wèn)題xyOll’l’’P第6頁(yè)/共26頁(yè)

過(guò)一點(diǎn)P可以作無(wú)數(shù)條直線l1,l2

,l3

,…它們都經(jīng)過(guò)點(diǎn)P

(組成一個(gè)直線束),這些直線區(qū)別在哪里呢?問(wèn)題xyOll’l’’P問(wèn)題引入第7頁(yè)/共26頁(yè)

容易看出,它們的傾斜程度不同.怎樣描述直線的傾斜程度呢?問(wèn)題xyOll’l’’P問(wèn)題引入第8頁(yè)/共26頁(yè)

當(dāng)直線l與x軸相交時(shí),我們?nèi)軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角(angleofinclination).xyOl

當(dāng)直線l與x軸平行或重合時(shí),規(guī)定它的傾斜角為.直線的傾斜角的取值范圍為:直線的傾斜角第9頁(yè)/共26頁(yè)

直線的傾斜程度與傾斜角有什么關(guān)系?

平面直角坐標(biāo)系中每一條直線都有確定的傾斜角,傾斜程度不同的直線有不同的傾斜角,度相同的直線其傾斜角相同.

傾斜程xyOl

已知直線上的一個(gè)點(diǎn)不能確定一條直線的位置;同樣已知直線的傾斜角α.也不能確定一條直線的位置.但是,直線上的一個(gè)點(diǎn)和這條直線的傾斜角可以唯一確定一條直線.直線的傾斜角第10頁(yè)/共26頁(yè)

確定平面直角坐標(biāo)系中一條直線位置的幾何要素是:

直線上的一個(gè)定點(diǎn)以及它的傾斜角,二者缺一不可.確定直線的要素xyOlP第11頁(yè)/共26頁(yè)

日常生活中,還有沒(méi)有表示傾斜程度的量?前進(jìn)量升高量問(wèn)題問(wèn)題引入第12頁(yè)/共26頁(yè)問(wèn)題前進(jìn)升高例如,“進(jìn)2升3”與“進(jìn)2升2”比較,前者更陡一些,因?yàn)槠露龋ū龋﹩?wèn)題引入第13頁(yè)/共26頁(yè)通常用小寫(xiě)字母k表示,即

一條直線的傾斜角的正切值叫做這條直線的斜率(slope).

傾斜角是的直線有斜率嗎?

傾斜角是的直線的斜率不存在.直線的斜率如果使用“傾斜角”這個(gè)概念,那么這里的“坡度(比)”實(shí)際就是“傾斜角α的正切”.第14頁(yè)/共26頁(yè)

如:傾斜角時(shí),直線的斜率當(dāng)為銳角時(shí),如:傾斜角為時(shí),由即這條直線的斜率為直線的斜率傾斜角α不是90°的直線都有斜率,并且傾斜角不同,直線的斜率也不同.因此,可以用斜率表示直線的傾斜程度.第15頁(yè)/共26頁(yè)已知直線上兩點(diǎn)的坐標(biāo),如何計(jì)算直線的斜率??jī)牲c(diǎn)的斜率公式問(wèn)題

給定兩點(diǎn)P1(x1,y1),P2(x2,y2),并且x1≠x2,如何計(jì)算直線P1P2的斜率k.第16頁(yè)/共26頁(yè)當(dāng)為銳角時(shí),在直角中

設(shè)直線P1P2的傾斜角為α(α≠90°),當(dāng)直線P1P2的方向(即從P1指向P2的方向)向上時(shí),過(guò)點(diǎn)P1作x軸的平行線,過(guò)點(diǎn)P2作y軸的平行線,兩線相交于點(diǎn)Q,于是點(diǎn)Q的坐標(biāo)為(x2,y1

).兩點(diǎn)的斜率公式第17頁(yè)/共26頁(yè)當(dāng)為鈍角時(shí),在直角中兩點(diǎn)的斜率公式第18頁(yè)/共26頁(yè)

同樣,當(dāng)?shù)姆较蛳蛏蠒r(shí),也有兩點(diǎn)的斜率公式第19頁(yè)/共26頁(yè)1.已知直線上兩點(diǎn),運(yùn)用上述公式計(jì)算直線斜率時(shí),與兩點(diǎn)坐標(biāo)的順序有關(guān)嗎?無(wú)關(guān)兩點(diǎn)的斜率公式思考2.當(dāng)直線平行于y軸,或與y軸重合時(shí),上述斜率公式還適用嗎?為什么?不適用第20頁(yè)/共26頁(yè)

當(dāng)直線與軸平行或重合時(shí),上述式子還成立嗎?為什么?

經(jīng)過(guò)兩點(diǎn)的直線的斜率公式為:兩點(diǎn)的斜率公式思考成立第21頁(yè)/共26頁(yè)

例1如圖,已知,求直線AB,BC,CA的斜率,并判斷這些直線的傾斜角是銳角還是鈍角.解:直線AB的斜率直線BC的斜率直線CA的斜率

由及知,直線AB與CA的傾斜角均為銳角;由知,直線BC的傾斜角為鈍角.典型例題第22頁(yè)/共26頁(yè)

例2在平面直角坐標(biāo)系中,畫(huà)出經(jīng)過(guò)原點(diǎn)且斜率分別為1,-1,2及-3的直線及.即

解:取上某一點(diǎn)為的坐標(biāo)是,根據(jù)斜率公式有:

設(shè),則,于是的坐標(biāo)是.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論