《離散型隨機(jī)變量及其分布列》同步練習(xí)()_第1頁
《離散型隨機(jī)變量及其分布列》同步練習(xí)()_第2頁
《離散型隨機(jī)變量及其分布列》同步練習(xí)()_第3頁
《離散型隨機(jī)變量及其分布列》同步練習(xí)()_第4頁
《離散型隨機(jī)變量及其分布列》同步練習(xí)()_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

《離散型隨機(jī)變量及其分布列》同步練習(xí)1.(2022陜西,12分)在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:作物產(chǎn)量(kg)300500概率作物市場價(jià)格(元/kg)610概率(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.解:(1)設(shè)A表示事件“作物產(chǎn)量為300kg”,B表示事件“作物市場價(jià)格為6元/kg”,由題設(shè)知P(A)=,P(B)=,因?yàn)槔麧櫍疆a(chǎn)量×市場價(jià)格-成本,所以X所有可能的取值為500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800.P(X=4000)=P(eq\x\to(A))P(eq\x\to(B))=(1-×(1-=,P(X=2000)=P(eq\x\to(A))P(B)+P(A)P(eq\x\to(B))=(1-×+×(1-=,P(X=800)=P(A)P(B)=×=,所以X的分布列為X40002000800P(2)設(shè)Ci表示事件“第i季利潤不少于2000元”(i=1,2,3),由題意知C1,C2,C3相互獨(dú)立,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=+=(i=1,2,3),3季的利潤均不少于2000元的概率為P(C1C2C3)=P(C1)P(C2)P(C3)==;3季中有2季的利潤不少于2000元的概率為P(eq\x\to(C1)C2C3)+P(C1eq\x\to(C2)C3)+P(C1C2eq\x\to(C3))=3××=,所以,這3季中至少有2季的利潤不少于2000元的概率為+=.2.(2022新課標(biāo)全國Ⅰ,12分)一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果n=4,再從這批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的每件產(chǎn)品是優(yōu)質(zhì)品的概率都為eq\f(1,2),且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.(1)求這批產(chǎn)品通過檢驗(yàn)的概率;(2)已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為100元,且抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.解:本題主要考查獨(dú)立重復(fù)試驗(yàn)和互斥事件的概率、條件概率、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望等,意在考查考生的閱讀理解能力及運(yùn)用所學(xué)概率知識(shí)解決實(shí)際問題的能力.(1)設(shè)第一次取出的4件產(chǎn)品中恰有3件優(yōu)質(zhì)品為事件A1,第一次取出的4件產(chǎn)品全是優(yōu)質(zhì)品為事件A2,第二次取出的4件產(chǎn)品都是優(yōu)質(zhì)品為事件B1,第二次取出的1件產(chǎn)品是優(yōu)質(zhì)品為事件B2,這批產(chǎn)品通過檢驗(yàn)為事件A,依題意有A=(A1B1)∪(A2B2),且A1B1與A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=eq\f(4,16)×eq\f(1,16)+eq\f(1,16)×eq\f(1,2)=eq\f(3,64).(2)X可能的取值為400,500,800,并且P(X=400)=1-eq\f(4,16)-eq\f(1,16)=eq\f(11,16),P(X=500)=eq\f(1,16),P(X=800)=eq\f(1,4).所以X的分布列為X400500800Peq\f(11,16)eq\f(1,16)eq\f(1,4)EX=400×eq\f(11,16)+500×eq\f(1,16)+800×eq\f(1,4)=.3.(2022山東,12分)甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是eq\f(1,2)外,其余每局比賽甲隊(duì)獲勝的概率都是eq\f(2,3).假設(shè)各局比賽結(jié)果互相獨(dú)立.(1)分別求甲隊(duì)以3∶0,3∶1,3∶2勝利的概率;(2)若比賽結(jié)果為3∶0或3∶1,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3∶2,則勝利方得2分、對(duì)方得1分.求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.解:本題考查相互獨(dú)立事件的概率、二項(xiàng)分布、離散型隨機(jī)變量的概率分布與數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查分類與整合思想,考查運(yùn)算求解能力,考查分析問題和解決問題的能力.(1)記“甲隊(duì)以3∶0勝利”為事件A1,“甲隊(duì)以3∶1勝利”為事件A2,“甲隊(duì)以3∶2勝利”為事件A3,由題意知,各局比賽結(jié)果相互獨(dú)立,故P(A1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))3=eq\f(8,27),P(A2)=Ceq\o\al(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))2eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))×eq\f(2,3)=eq\f(8,27),P(A3)=Ceq\o\al(2,4)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))2eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))2×eq\f(1,2)=eq\f(4,27).所以,甲隊(duì)以3∶0勝利、以3∶1勝利的概率都為eq\f(8,27),以3∶2勝利的概率為eq\f(4,27).(2)設(shè)“乙隊(duì)以3∶2勝利”為事件A4,由題意知,各局比賽結(jié)果相互獨(dú)立,所以P(A4)=Ceq\o\al(2,4)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))2×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=eq\f(4,27).由題意知,隨機(jī)變量X的所有可能的取值為0,1,2,3,根據(jù)事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=eq\f(16,27),又P(X=1)=P(A3)=eq\f(4,27),P(X=2)=P(A4)=eq\f(4,27),P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=eq\f(3,27),故X的分布列為X0123Peq\f(16,27)eq\f(4,27)eq\f(4,27)eq\f(3,27)所以EX=0×eq\f(16,27)+1×eq\f(4,27)+2×eq\f(4,27)+3×eq\f(3,27)=eq\f(7,9).4.(2022湖南,12分)某人在如圖所示的直角邊長為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn)以及三角形的頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:X1234Y51484542這里,兩株作物“相近”是指它們之間的直線距離不超過1米.(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率;(2)從所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.解:本小題主要考查古典概型、離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的求解,考查考生的閱讀理解能力、收集數(shù)據(jù)的能力、運(yùn)算求解能力和創(chuàng)新意識(shí).(1)所種作物總株數(shù)N=1+2+3+4+5=15,其中三角形地塊內(nèi)部的作物株數(shù)為3,邊界上的作物株數(shù)為12.從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株的不同結(jié)果有Ceq\o\al(1,3)Ceq\o\al(1,12)=36種,選取的兩株作物恰好“相近”的不同結(jié)果有3+3+2=8種.故從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,它們恰好“相近”的概率為eq\f(8,36)=eq\f(2,9).(2)先求從所種作物中隨機(jī)選取的一株作物的年收獲量Y的分布列.因?yàn)镻(Y=51)=P(X=1),P(Y=48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4),所以只需求出P(X=k)(k=1,2,3,4)即可.記nk為其“相近”作物恰有k株的作物株數(shù)(k=1,2,3,4),則n1=2,n2=4,n3=6,n4=3.由P(X=k)=eq\f(nk,N),得P(X=1)=eq\f(2,15),P(X=2)=eq\f(4,15),P(X=3)=eq\f(6,15)=eq\f(2,5),P(X=4)=eq\f(3,15)=eq\f(1,5).故所求的分布列為Y51484542Peq\f(2,15)eq\f(4,15)eq\f(2,5)eq\f(1,5)所求的數(shù)學(xué)期望為E(Y)=51×eq\f(2,15)+48×eq\f(4,15)+45×eq\f(2,5)+42×eq\f(1,5)=eq\f(34+64+90+42,5)=46.解析:∵P(X=0)=eq\f(1,12)=(1-p)2×eq\f(1,3),∴p=eq\f(1,2),隨機(jī)變量X的可能值為0,1,2,3,因此P(X=0)=eq\f(1,12),P(X=1)=eq\f(2,3)×(eq\f(1,2))2+eq\f(2,3)×(eq\f(1,2))2=eq\f(1,3),P(X=2)=eq\f(2,3)×(eq\f(1,2))2×2+eq\f(1,3)×(eq\f(1,2))2=eq\f(5,12),P(X=3)=eq\f(2,3)×(eq\f(1,2))2=eq\f(1,6),因此E(X)=1×eq\f(1,3)+2×eq\f(5,12)+3×eq\f(1,6)=eq\f(5,3).答案:eq\f(5,3)5.(2022山東,12分)現(xiàn)有甲、乙兩個(gè)靶.某射手向甲靶射擊一次,命中的概率為eq\f(3,4),命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為eq\f(2,3),每命中一次得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨(dú)立.假設(shè)該射手完成以上三次射擊.(1)求該射手恰好命中一次的概率;(2)求該射手的總得分X的分布列及數(shù)學(xué)期望EX.解:(1)記:“該射手恰好命中一次”為事件A,“該射手射擊甲靶命中”為事件B,“該射手第一次射擊乙靶命中”為事件C,“該射手第二次射擊乙靶命中”為事件D,由題意知P(B)=eq\f(3,4),P(C)=P(D)=eq\f(2,3),由于A=Beq\x\to(C)eq\x\to(D)+eq\x\to(B)Ceq\x\to(D)+eq\x\to(B)eq\x\to(C)D,根據(jù)事件的獨(dú)立性和互斥性得P(A)=P(Beq\x\to(C)eq\x\to(D)+eq\x\to(B)Ceq\x\to(D)+eq\x\to(B)eq\x\to(C)D)=P(Beq\x\to(C)eq\x\to(D))+P(eq\x\to(B)Ceq\x\to(D))+P(eq\x\to(B)eq\x\to(C)D)=P(B)P(eq\x\to(C))P(eq\x\to(D))+P(eq\x\to(B))P(C)P(eq\x\to(D))+P(eq\x\to(B))P(eq\x\to(C))P(D)=eq\f(3,4)×(1-eq\f(2,3))×(1-eq\f(2,3))+(1-eq\f(3,4))×eq\f(2,3)×(1-eq\f(2,3))+(1-eq\f(3,4))×(1-eq\f(2,3))×eq\f(2,3)=eq\f(7,36).(2)根據(jù)題意,X的所有可能取值為0,1,2,3,4,5.根據(jù)事件的獨(dú)立性和互斥性得P(X=0)=P(eq\x\to(B)eq\x\to(C)eq\x\to(D))=[1-P(B)][1-P(C)][1-P(D)]=(1-eq\f(3,4))×(1-eq\f(2,3))×(1-eq\f(2,3))=eq\f(1,36).P(X=1)=P(Beq\x\to(C)eq\x\to(D))=P(B)P(eq\x\to(C))P(eq\x\to(D))=eq\f(3,4)×(1-eq\f(2,3))×(1-eq\f(2,3))=eq\f(1,12).P(X=2)=P(eq\x\to(B)Ceq\x\to(D)+eq\x\to(B)eq\x\to(C)D)=P(eq\x\to(B)Ceq\x\to(D))+P(eq\x\to(B)eq\x\to(C)D)=(1-eq\f(3,4))×eq\f(2,3)×(1-eq\f(2,3))+(1-eq\f(3,4))×(1-eq\f(2,3))×eq\f(2,3)=eq\f(1,9),P(X=3)=P(BCeq\x\to(D)+Beq\x\to(C)D)=P(BCeq\x\to(D))+P(Beq\x\to(C)D)=eq\f(3,4)×eq\f(2,3)×(1-eq\f(2,3))+eq\f(3,4)×(1-eq\f(2,3))×eq\f(2,3)=eq\f(1,3),P(X=4)=P(eq\x\to(B)CD)=(1-eq\f(3,4))×eq\f(2,3)×eq\f(2,3)=eq\f(1,9),P(X=5)=P(BCD)=eq\f(3,4)×eq\f(2,3)×eq\f(2,3)=eq\f(1,3).故X的分布列為X012345Peq\f(1,36)eq\f(1,12)eq\f(1,9)eq\f(1,3)eq\f(1,9)eq\f(1,3)所以EX=0×eq\f(1,36)+1×eq\f(1,12)+2×eq\f(1,9)+3×eq\f(1,3)+4×eq\f(1,9)+5×eq\f(1,3)=eq\f(41,12).6.(2022江蘇,10分)設(shè)ξ為隨機(jī)變量.從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),ξ=0;當(dāng)兩條棱平行時(shí),ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).解:(1)若兩條棱相交,則交點(diǎn)必為正方體8個(gè)頂點(diǎn)中的1個(gè),過任意1個(gè)頂點(diǎn)恰有3條棱,所以共有8Ceq\o\al(2,3)對(duì)相交棱,因此P(ξ=0)=eq\f(8C\o\al(2,3),C\o\al(2,12))=eq\f(8×3,66)=eq\f(4,11).(2)若兩條棱平行,則它們的距離為1或eq\r(2),其中距離為eq\r(2)的共有6對(duì),故P(ξ=eq\r(2))=eq\f(6,C\o\al(2,12))=eq\f(1,11),于是P(ξ=1)=1-P(ξ=0)-P(ξ=eq\r(2))=1-eq\f(4,11)-eq\f(1,11)=eq\f(6,11),所以隨機(jī)變量ξ的分布列是ξ01eq\r(2)P(ξ)eq\f(4,11)eq\f(6,11)eq\f(1,11)因此E(ξ)=1×eq\f(6,11)+eq\r(2)×eq\f(1,11)=eq\f(6+\r(2),11).7.(2022新課標(biāo)全國,12分)某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:A配方的頻數(shù)分布表指標(biāo)值分組[90,94)[94,98)[98,102)[102,106)[106,110]頻數(shù)82042228B配方的頻數(shù)分布表指標(biāo)值分組[90,94)[94,98)[98,102)[102,106)[106,110]頻數(shù)412423210(1)分別估計(jì)用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為y=eq\b\lc\{\rc\(\a\vs4\al\co1(-2,t<94,,2,94≤t<102,,4,t≥102.))從用B配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元),求X的分布列及數(shù)學(xué)期望.(以試驗(yàn)結(jié)果中質(zhì)量指標(biāo)值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標(biāo)值落入相應(yīng)組的概率)解:(1)由試驗(yàn)結(jié)果知,用A配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為eq\f(22+8,100)=,所以用A配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計(jì)值為.由試驗(yàn)結(jié)果知,用B配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為eq\f(32+10,100)=,所以用B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計(jì)值為.(2)用B配方生產(chǎn)的100件產(chǎn)品中,其質(zhì)量指標(biāo)值落入?yún)^(qū)間[90,94),[94,102),[102,110]的頻率分別為,,,因此P(X=-2)=,P(X=2)=,P(X=4)=,即X的分布列為X-224PX的數(shù)學(xué)期望EX=-2×+2×+4×=.8.(2022山東,12分)某學(xué)校舉行知識(shí)競賽,第一輪選拔共設(shè)有A、B、C、D四個(gè)問題,規(guī)則如下:(1)每位參加者計(jì)分器的初始分均為10分,答對(duì)問題A、B、C、D分別加1分、2分、3分、6分,答錯(cuò)任一題減2分;(2)每回答一題,計(jì)分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足14分時(shí),答題結(jié)束,淘汰出局;(3)每位參加者按問題A、B、C、D順序作答,直至答題結(jié)束.假設(shè)甲同學(xué)對(duì)問題A、B、C、D回答正確的概率依次為eq\f(3,4),eq\f(1,2),eq\f(1,3),eq\f(1,4),且各題回答正確與否相互之間沒有影響.①求甲同學(xué)能進(jìn)入下一輪的概率;②用ξ表示甲同學(xué)本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.解:設(shè)A,B,C,D分別為第一、二、三、四個(gè)問題.用Mi(i=1,2,3,4)表示甲同學(xué)第i個(gè)問題回答正確,用Ni(i=1,2,3,4)表示甲同學(xué)第i個(gè)問題回答錯(cuò)誤.則Mi與Ni是對(duì)立事件(i=1,2,3,4),由題意得P(M1)=eq\f(3,4),P(M2)=eq\f(1,2),P(M3)=eq\f(1,3),P(M4)=eq\f(1,4),所以P(N1)=eq\f(1,4),P(N2)=eq\f(1,2),P(N3)=eq\f(2,3),P(N4)=eq\f(3,4).(1)記“甲同學(xué)能進(jìn)入下一輪”為事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論