![廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view/6783c13419061e3c612de242c0b275b8/6783c13419061e3c612de242c0b275b81.gif)
![廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view/6783c13419061e3c612de242c0b275b8/6783c13419061e3c612de242c0b275b82.gif)
![廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view/6783c13419061e3c612de242c0b275b8/6783c13419061e3c612de242c0b275b83.gif)
![廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view/6783c13419061e3c612de242c0b275b8/6783c13419061e3c612de242c0b275b84.gif)
![廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view/6783c13419061e3c612de242c0b275b8/6783c13419061e3c612de242c0b275b85.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西壯族自治區(qū)桂林市市全州縣第三中學(xué)2021-2022學(xué)年高三數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)之積為Tn,且T14=128,則+的最小值是()A. B. C.2 D.2參考答案:A【考點(diǎn)】等比數(shù)列的通項(xiàng)公式.【專題】等差數(shù)列與等比數(shù)列.分析;由等比數(shù)列可得a7a8=2,可得+==(a7+a8),由基本不等式求最值可得.解:由題意和等比數(shù)列的性質(zhì)可得T14=(a7a8)7=128,結(jié)合數(shù)列的項(xiàng)為正數(shù)可得a7a8=2,∴+==(a7+a8)≥?2=,當(dāng)且僅當(dāng)a7=a8=時(shí)取等號(hào),故選:A.【點(diǎn)評(píng)】本題考查等比數(shù)列的性質(zhì)和基本不等式求最值,屬基礎(chǔ)題.2.集合A={x|x2﹣x﹣6≤0},B={x|x<﹣1},則A∩(?RB)等于()A.{x|x>﹣1} B.{x|x≥﹣1} C.{x|﹣1≤x≤3} D.{x|﹣2≤x≤1}參考答案:C【考點(diǎn)】交、并、補(bǔ)集的混合運(yùn)算.【分析】解不等式求出A,根據(jù)補(bǔ)集與交集的定義計(jì)算即可.【解答】解:A={x|x2﹣x﹣6≤0}={x|﹣2≤x≤3},B={x|x<﹣1},?RB={x|x≥﹣1},∴A∩(?RB)={x|﹣1≤x≤3}.故選:C.【點(diǎn)評(píng)】本題考查了解不等式與集合的基本運(yùn)算問(wèn)題,是基礎(chǔ)題.3.函數(shù)f(x)=的定義域?yàn)椋ǎ〢.(0,) B.(2,+∞) C.(0,)∪(2,+∞) D.(0,]∪[2,+∞)參考答案:C【考點(diǎn)】函數(shù)的定義域及其求法.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】根據(jù)函數(shù)出來(lái)的條件,建立不等式即可求出函數(shù)的定義域.【解答】解:要使函數(shù)有意義,則,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函數(shù)的定義域?yàn)椋?,)∪(2,+∞),故選:C【點(diǎn)評(píng)】本題主要考查函數(shù)定義域的求法,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).4.圓上的點(diǎn)到直線的距離最大值是(
)(A)2
(B)1+
(C)
(D)1+參考答案:B略5.若直線與曲線相切,則常數(shù)A.
B.
C.
D.參考答案:C略6.若直線與圓有公共點(diǎn),則實(shí)數(shù)取值范圍是
(
)A.
B.
C.
D.參考答案:
B圓心為,半徑為,圓心到直線的距離為。要使直線與圓有公共點(diǎn),則有,即,所以,解得,即,選B.7.如圖1,四棱柱中,、分別是、的中點(diǎn).下列結(jié)論中,正確的是
(
)A. B.平面C.
D.平面參考答案:B試題分析:取的中點(diǎn),連接,延長(zhǎng)交于,延長(zhǎng)交于,∵、分別是、的中點(diǎn),∴是的中點(diǎn),是中點(diǎn),從而可得是中點(diǎn),是中點(diǎn),所以,又平面,平面,所以平面,選B.8.設(shè)集合A={},集合B為函數(shù)的定義域,則AB=(
) A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]參考答案:D略9.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),設(shè)向量a,b,其中a=(3,1),b=(1,3),若,且,則點(diǎn)C所有可能的位置區(qū)域用陰影表示正確的是參考答案:【知識(shí)點(diǎn)】平面向量基本定理及向量坐標(biāo)運(yùn)算F2【答案解析】D當(dāng)λ=μ=1時(shí),=λ+μ=+=(4,4),故可以排除C答案
當(dāng)λ=μ=0時(shí),=λ+μ=+=(0,0),故可以排除B答案
當(dāng)μ=,λ=時(shí),=λ+μ==(),故可以排除答案A
故選D【思路點(diǎn)撥】在解答動(dòng)點(diǎn)表示的平面區(qū)域時(shí),我們可以使用特殊點(diǎn)代入排除法,即取值,然后計(jì)算滿足條件點(diǎn)的位置,然后排除到一定錯(cuò)誤的答案.10.已知實(shí)數(shù),滿足(),則下列關(guān)系式恒成立的是(
)A. B.C. D.參考答案:D試題分析:∵實(shí)數(shù),滿足(),∴,對(duì)于選項(xiàng)A.若,則等價(jià)為,即,當(dāng),時(shí),滿足,但不成立.對(duì)于選項(xiàng)B.當(dāng),時(shí),滿足,但不成立;對(duì)于選項(xiàng)C.若,則等價(jià)為成立,當(dāng),時(shí),滿足,但不成立;對(duì)于選項(xiàng)D.當(dāng)時(shí),恒成立,故選D.考點(diǎn):1、函數(shù)的單調(diào)性;2、不等式比較大小.二、填空題:本大題共7小題,每小題4分,共28分11.給出下列四個(gè)命題:①直線的一個(gè)方向向量是;②若直線過(guò)拋物線的焦點(diǎn),且與這條拋物線交于兩點(diǎn),則的最小值;③若⊙⊙,則這兩圓恰有2條公切線;④若直線與直線互相垂直,則其中正確命題的序號(hào)是______.(把你認(rèn)為正確命題的序號(hào)都填上)參考答案:②③12.已知為一個(gè)內(nèi)角,且,則___________參考答案:13.若對(duì)滿足條件的正實(shí)數(shù)都有恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)________________.參考答案:略14.已知函數(shù)的圖像如圖所示,則 。參考答案:015.(4分)(2013?海淀區(qū)一模)已知函數(shù)f(x)=有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是_________.參考答案:a>4由題意可得函數(shù)f(x)的圖象與x軸有三個(gè)不同的交點(diǎn),如圖所示:等價(jià)于當(dāng)x≥0時(shí),方程2x﹣a=0有一個(gè)根,且x<0時(shí),方程有兩個(gè)根,即?a>4.故實(shí)數(shù)a的取值范圍是a>4.故答案為:a>4.16.對(duì)于實(shí)數(shù),若整數(shù)滿足,則稱為離最近的整數(shù),記為,,給出下列四個(gè)命題:
①;
②函數(shù)的值域是[0,];
③函數(shù)的圖像關(guān)于直線(k∈Z)對(duì)稱;④函數(shù)是周期函數(shù),最小正周期是1;
其中真命題是__________.參考答案:②③④①故錯(cuò),②,故函數(shù)的值域是[0,],③④畫圖可知,也可檢驗(yàn),如等17.已知函數(shù)則=_______________.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.(12分)已知函數(shù),。(1)求函數(shù)的最小值;(2)若存在(是自然對(duì)數(shù)的底數(shù))使不等式成立,求實(shí)數(shù)的取值范圍。參考答案:(1);(2)【知識(shí)點(diǎn)】利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.B11B12(1)易知,定義域?yàn)?,且,?dāng)時(shí),,此時(shí)單調(diào)遞減,當(dāng)時(shí),,此時(shí)單調(diào)遞增。所以;(2)由題意知,即,設(shè),則當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,此時(shí)單調(diào)遞增。所以,因?yàn)榇嬖谑共坏仁匠闪?,所以,又,故所以。【思路點(diǎn)撥】(1)由已知知函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)=lnx+1,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的最小值;(2)由已知得,,設(shè),,則,,由此利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)a的取值。19.(本小題滿分12分)
現(xiàn)有甲、乙兩個(gè)靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒(méi)有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒(méi)有命中得0分。該射手每次射擊的結(jié)果相互獨(dú)立。假設(shè)該射手完成以上三次射擊。(Ⅰ)求該射手恰好命中一次得的概率;(Ⅱ)求該射手的總得分X的分布列及數(shù)學(xué)期望EX參考答案:解:(Ⅰ);(Ⅱ),X012345PEX=0×+1×+2×+3×+4×+5×=20.(12分)設(shè),其中.(1)當(dāng)時(shí),求的極值點(diǎn);(2)若為R上的單調(diào)函數(shù),求的取值范圍.參考答案:對(duì)求導(dǎo)得
①(1)當(dāng)時(shí),若,則,解得結(jié)合①,可知x+0_0+↗極大值↘極小值↗所以,是極小值點(diǎn),是極大值點(diǎn).------------------6分(2)若為R上的單調(diào)函數(shù),則在R上不變號(hào),結(jié)合①與條件a>0,知在R上恒成立,因此,由此并結(jié)合a>0,知.-----------------12分21.(本小題滿分10分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為。(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;(Ⅱ)求與交點(diǎn)的極坐標(biāo)()。參考答案:(1)因?yàn)?,消去參?shù),得,即,故極坐標(biāo)方程為;(2)的普通方程為,聯(lián)立、的方程,解得或,所以交點(diǎn)的極坐標(biāo)為.22.已知函數(shù)f(x)=(lnx﹣k﹣1)x(k∈R)(1)當(dāng)x>1時(shí),求f(x)的單調(diào)區(qū)間和極值.(2)若對(duì)于任意x∈[e,e2],都有f(x)<4lnx成立,求k的取值范圍.(3)若x1≠x2,且f(x1)=f(x2),證明:x1x2<e2k.參考答案:【分析】(1)由題意x>0,=lnx﹣k,由此根據(jù)k≤0,k>0利用導(dǎo)數(shù)性質(zhì)分類討論,能求出函數(shù)f(x)的單調(diào)區(qū)間和極值.(2)問(wèn)題轉(zhuǎn)化為k+1>對(duì)于x∈[e,e2]恒成立,令g(x)=,則,令t(x)=4lnx+x﹣4,x∈[e,e2],則,由此利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)k的取值范圍.(3)設(shè)x1<x2,則0<x1<ek<x2<ek+1,要證x1x2<e2k,只要證x2<,即證<,由此利用導(dǎo)數(shù)性質(zhì)能證明x1x2<e2k.【解答】解:(1)∵f(x)=(lnx﹣k﹣1)x(k∈R),∴x>0,=lnx﹣k,①當(dāng)k≤0時(shí),∵x>1,∴f′(x)=lnx﹣k>0,函數(shù)f(x)的單調(diào)增區(qū)間是(1,+∞),無(wú)單調(diào)減區(qū)間,無(wú)極值;②當(dāng)k>0時(shí),令lnx﹣k=0,解得x=ek,當(dāng)1<x<ek時(shí),f′(x)<0;當(dāng)x>ek,f′(x)>0,∴函數(shù)f(x)的單調(diào)減區(qū)間是(1,ek),單調(diào)減區(qū)間是(ek,+∞),在區(qū)間(1,+∞)上的極小值為f(ek)=(k﹣k﹣1)ek=﹣ek,無(wú)極大值.(2)∵對(duì)于任意x∈[e,e2],都有f(x)<4lnx成立,∴f(x)﹣4lnx<0,即問(wèn)題轉(zhuǎn)化為(x﹣4)lnx﹣(k+1)x<0對(duì)于x∈[e,e2]恒成立,即k+1>對(duì)于x∈[e,e2]恒成立,令g(x)=,則,令t(x)=4lnx+x﹣4,x∈[e,e2],則,∴t(x)在區(qū)間[e,e2]上單調(diào)遞增,故t(x)min=t(e)=e﹣4+4=e>0,故g′(x)>0,∴g(x)在區(qū)間[e,e2]上單調(diào)遞增,函數(shù)g(x)max=g(e2)=2﹣,要使k+1>對(duì)于x∈[e,e2]恒成立,只要k+1>g(x)max,∴k+1>2﹣,即實(shí)數(shù)k的取值范圍是(1﹣,+∞).證明:(3)∵f(x1)=f(x2),由(1)知,函數(shù)f(x)在區(qū)間(0,ek)上單調(diào)遞減,在區(qū)間(ek,+∞)上單調(diào)遞增,且f(ek+1)=0,不妨設(shè)x1<x2,則0<x1<ek<x2<ek+1,要證x1x2<e2k,只要證x2<,即證<,∵f(x)在區(qū)間(ek,+∞)上單調(diào)遞增,∴f(x2)<f(),又f(x1)=f(x2),即證f(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司員工聘用勞動(dòng)合同書
- 三農(nóng)產(chǎn)品質(zhì)量安全指南
- 房屋中介租賃合同樣板商鋪
- 語(yǔ)言教學(xué)與翻譯服務(wù)作業(yè)指導(dǎo)書
- 服務(wù)器銷售合同
- 2025年黔西南道路運(yùn)輸從業(yè)資格考試下載
- 2025年西藏貨運(yùn)從業(yè)資格證考試試題及答案大全
- 2025年重慶貨運(yùn)從業(yè)資格證模擬試題答案大全及答案
- 2025年貴州貨運(yùn)從業(yè)資格證500道題目答案
- 2025年池州道路貨運(yùn)駕駛員從業(yè)資格證考試
- 暢捷通g6財(cái)務(wù)管理系統(tǒng)專業(yè)版使用手冊(cè)
- 化工儀表及自動(dòng)化ppt課件匯總?cè)譸pt完整版課件最全教學(xué)教程整套課件全書電子教案全套電子講義
- 2022注冊(cè)電氣工程師專業(yè)考試規(guī)范清單匯總
- 一年級(jí)寫字下學(xué)期課件(PPT 38頁(yè))
- 桂花-作文ppt-PPT課件(共14張)
- 高一數(shù)學(xué)概率部分知識(shí)點(diǎn)總結(jié)及典型例題解析 新課標(biāo) 人教版 必修
- 鐵路運(yùn)費(fèi)計(jì)算方法
- 《小腦梗死護(hù)理查房》
- 免疫及炎癥相關(guān)信號(hào)通路
- 某風(fēng)電場(chǎng)設(shè)備材料設(shè)備清單
- —橋梁專業(yè)施工圖設(shè)計(jì)審查要(終)
評(píng)論
0/150
提交評(píng)論