![2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁](http://file4.renrendoc.com/view/f42bf255bdd833bde82f067fa866635f/f42bf255bdd833bde82f067fa866635f1.gif)
![2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁](http://file4.renrendoc.com/view/f42bf255bdd833bde82f067fa866635f/f42bf255bdd833bde82f067fa866635f2.gif)
![2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁](http://file4.renrendoc.com/view/f42bf255bdd833bde82f067fa866635f/f42bf255bdd833bde82f067fa866635f3.gif)
![2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁](http://file4.renrendoc.com/view/f42bf255bdd833bde82f067fa866635f/f42bf255bdd833bde82f067fa866635f4.gif)
![2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁](http://file4.renrendoc.com/view/f42bf255bdd833bde82f067fa866635f/f42bf255bdd833bde82f067fa866635f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年河北省承德市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
A.
B.
C.
D.
2.下列命題不正確的是()。
A.兩個(gè)無窮大量之和仍為無窮大量
B.上萬個(gè)無窮小量之和仍為無窮小量
C.兩個(gè)無窮大量之積仍為無窮大量
D.兩個(gè)有界變量之和仍為有界變量
3.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
4.
5.
6.
7.
A.0
B.cos2-cos1
C.sin1-sin2
D.sin2-sin1
8.
9.A.2B.2xC.2yD.2x+2y
10.
11.績(jī)效評(píng)估的第一個(gè)步驟是()
A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見
12.
13.
14.A.0B.1C.2D.415.()。A.過原點(diǎn)且平行于X軸B.不過原點(diǎn)但平行于X軸C.過原點(diǎn)且垂直于X軸D.不過原點(diǎn)但垂直于X軸16.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
17.曲線y=ex與其過原點(diǎn)的切線及y軸所圍面積為
A.
B.
C.
D.
18.
19.
20.()。A.
B.
C.
D.
二、填空題(20題)21.
22.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
23.
24.
25.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=__________
26.微分方程y'+9y=0的通解為______.27.微分方程y"-y'-2y=0的通解為______.
28.29.
30.
31.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.32.
33.
34.
35.
36.37.=______.38.
39.
40.∫(x2-1)dx=________。三、計(jì)算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.42.求曲線在點(diǎn)(1,3)處的切線方程.43.求微分方程的通解.44.證明:45.46.將f(x)=e-2X展開為x的冪級(jí)數(shù).
47.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
48.
49.
50.
51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
53.求微分方程y"-4y'+4y=e-2x的通解.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.
56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.57.58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.
四、解答題(10題)61.
62.求曲線y=x2+1在點(diǎn)(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.
63.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.
64.65.
66.求曲線y=2-x2和直線y=2x+2所圍成圖形面積.
67.計(jì)算68.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.
參考答案
1.B
2.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
3.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
4.D
5.B
6.D
7.A由于定積分
存在,它表示一個(gè)確定的數(shù)值,其導(dǎo)數(shù)為零,因此選A.
8.D
9.A
10.A解析:
11.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。
12.D解析:
13.D解析:
14.A本題考查了二重積分的知識(shí)點(diǎn)。
15.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過原點(diǎn)(或由
16.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
17.A
18.C解析:
19.A
20.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。
21.22.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
23.
24.eyey
解析:
25.26.y=Ce-9x本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.
分離變量
兩端分別積分
lny=-9x+C1,y=Ce-9x.27.y=C1e-x+C2e2x本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)微分方程的求解.
特征方程為r2-r-2=0,
特征根為r1=-1,r2=2,
微分方程的通解為y=C1e-x+C2ex.
28.
29.0
30.1/21/2解析:31.依全微分存在的充分條件知
32.1/6
33.(1+x)2
34.(-33)(-3,3)解析:
35.-4cos2x
36.37.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此
38.解析:
39.00解析:
40.41.由二重積分物理意義知
42.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
44.
45.
46.
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%48.由一階線性微分方程通解公式有
49.
50.51.函數(shù)的定義域?yàn)?/p>
注意
52.
列表:
說明
53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.
則
56.
57.58.由等價(jià)無窮小量的定義可知
59.
60.
61.
62.,因此曲線y=X2+1在點(diǎn)(1,2)處的切線方程為y-2=2(x-1),y=2x.曲線y=x2+1,切線y=2x與x=0所圍成的平面圖形如圖3-1所示.
其面積
本題考查的知識(shí)點(diǎn)為:求曲線的切線方程;利用定積分求平面圖形的面積.
63.
64.65.積分區(qū)域D如下圖所示:
被積函數(shù)f(x,y)=y/x,化為二次積分時(shí)對(duì)哪個(gè)變量皆易于積分;但是區(qū)域D易于用X—型不等式表示,因此選擇先對(duì)y積分,后對(duì)x積分的二次積分次序.
66.解
67.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
比較典型的錯(cuò)誤是利用換元計(jì)算時(shí),一些考生忘記將積分限也隨之變化.
68.本題考查的知識(shí)點(diǎn)為求抽象函數(shù)的偏導(dǎo)數(shù).
已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.
解法1令f'i表示廠對(duì)第i個(gè)位置變?cè)钠珜?dǎo)數(shù),則
這里應(yīng)指出,這是當(dāng)每個(gè)位置變?cè)獙?duì)x的偏導(dǎo)數(shù)易求時(shí),才采用此方法.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單盆不銹鋼水槽行業(yè)行業(yè)發(fā)展趨勢(shì)及投資戰(zhàn)略研究分析報(bào)告
- 2025-2030年中國(guó)羅絲除銹項(xiàng)目投資可行性研究分析報(bào)告
- 2021-2026年中國(guó)醛縮酶市場(chǎng)深度分析及投資戰(zhàn)略咨詢報(bào)告
- 文化產(chǎn)業(yè)項(xiàng)目居間合同
- 環(huán)保型磁性材料在綠色通信設(shè)備中的應(yīng)用研究
- 電競(jìng)酒店服務(wù)質(zhì)量評(píng)估體系構(gòu)建
- 2025年粉刺用具項(xiàng)目投資可行性研究分析報(bào)告
- 中國(guó)西洋棋子項(xiàng)目投資可行性研究報(bào)告
- 防腐漆涂料行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2024年醫(yī)療廢物回收處理市場(chǎng)運(yùn)行態(tài)勢(shì)及行業(yè)發(fā)展前景預(yù)測(cè)報(bào)告
- 中國(guó)移動(dòng)自智網(wǎng)絡(luò)白皮書(2024) 強(qiáng)化自智網(wǎng)絡(luò)價(jià)值引領(lǐng)加速邁進(jìn)L4級(jí)新階段
- 8.1認(rèn)識(shí)生命(課件)-2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 陜西省西安市2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- Unit 5 Section B(2a-2c)教學(xué)設(shè)計(jì)2023-2024學(xué)年人教版七年級(jí)英語下冊(cè)
- 三下 第11課 《在線學(xué)習(xí)工具》教案 浙教版2023信息科技
- 【萬通地產(chǎn)償債能力存在的問題及優(yōu)化建議(數(shù)據(jù)論文)11000字】
- 吉利收購(gòu)沃爾沃商務(wù)談判案例分析
- JGJ/T235-2011建筑外墻防水工程技術(shù)規(guī)程
- 人教版PEP五年級(jí)英語下冊(cè)單詞表與單詞字帖 手寫體可打印
- 如果歷史是一群喵
- 抖音房產(chǎn)直播敏感詞匯表
評(píng)論
0/150
提交評(píng)論