版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.2.()A. B. C.1 D.3.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.4.羽毛球混合雙打比賽每隊(duì)由一男一女兩名運(yùn)動(dòng)員組成.某班級(jí)從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊(duì)進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊(duì)參加比賽的概率為()A. B. C. D.5.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.6.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1477.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.8.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.9.過(guò)雙曲線的左焦點(diǎn)作傾斜角為的直線,若與軸的交點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.10.展開(kāi)式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.128011.已知函數(shù).設(shè),若對(duì)任意不相等的正數(shù),,恒有,則實(shí)數(shù)a的取值范圍是()A. B.C. D.12.在平面直角坐標(biāo)系中,已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為數(shù)列的前項(xiàng)和.若,則______.14.設(shè),則除以的余數(shù)是______.15.若的展開(kāi)式中各項(xiàng)系數(shù)之和為32,則展開(kāi)式中x的系數(shù)為_(kāi)____16.已知非零向量的夾角為,且,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過(guò)程中發(fā)生損壞時(shí),需要送維修處維修.工廠規(guī)定當(dāng)日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作.每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同.維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個(gè)數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個(gè)數(shù)12241515151215151524從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù).(Ⅰ)求X的分布列與數(shù)學(xué)期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過(guò)4個(gè),至少需要增加幾名維修工人?(只需寫(xiě)出結(jié)論)18.(12分)已知函數(shù).(1)解不等式;(2)使得,求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.20.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.21.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.22.(10分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問(wèn)題從表面上看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.2、A【解析】
利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長(zhǎng)公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長(zhǎng)的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】
利用復(fù)數(shù)的除法運(yùn)算,化簡(jiǎn)復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、B【解析】
根據(jù)組合知識(shí),計(jì)算出選出的人分成兩隊(duì)混合雙打的總數(shù)為,然后計(jì)算和分在一組的數(shù)目為,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊(duì)混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,對(duì)平均分組的問(wèn)題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計(jì)算,考驗(yàn)分析能力,屬中檔題.5、D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.6、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題7、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.8、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.9、A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項(xiàng)求解即可【詳解】直線的方程為,令,得.因?yàn)?,所以,只有選項(xiàng)滿足條件.故選:A【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.10、A【解析】
根據(jù)二項(xiàng)式展開(kāi)式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開(kāi)式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略:(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).11、D【解析】
求解的導(dǎo)函數(shù),研究其單調(diào)性,對(duì)任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域?yàn)?,,?dāng)時(shí),,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對(duì)任意、,恒有,即,,,令,則,原不等式等價(jià)于在單調(diào)遞減,即,從而,因?yàn)?,所以?shí)數(shù)a的取值范圍是故選:D.【點(diǎn)睛】此題考查含參函數(shù)研究單調(diào)性問(wèn)題,根據(jù)參數(shù)范圍化簡(jiǎn)后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問(wèn)題,屬于一般性題目.12、C【解析】
利用誘導(dǎo)公式以及二倍角公式,將化簡(jiǎn)為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因?yàn)?,且,所?故選:C.【點(diǎn)睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問(wèn)題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.14、1【解析】
利用二項(xiàng)式定理得到,將89寫(xiě)成1+88,然后再利用二項(xiàng)式定理展開(kāi)即可.【詳解】,因展開(kāi)式中后面10項(xiàng)均有88這個(gè)因式,所以除以的余數(shù)為1.故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問(wèn)題,解決此類問(wèn)題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開(kāi)分析,本題是一道基礎(chǔ)題.15、2025【解析】
利用賦值法,結(jié)合展開(kāi)式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求得展開(kāi)式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開(kāi)式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開(kāi)式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開(kāi)式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.16、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點(diǎn)睛】本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)分布列見(jiàn)解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問(wèn)的結(jié)果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;(Ⅱ)當(dāng)P(a≤X≤b)取到最大值時(shí),a,b的值可能為:,或,或.經(jīng)計(jì)算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點(diǎn)睛】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.18、(1);(2)或.【解析】
(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實(shí)數(shù)的取值范圍.【詳解】(1)因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),無(wú)解;當(dāng)時(shí),;綜上,不等式的解集為;(2),又,或.【點(diǎn)睛】本題考查分段函數(shù),絕對(duì)值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問(wèn)題,屬于中檔題.19、(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點(diǎn)睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.20、(Ⅰ)(Ⅱ)證明見(jiàn)解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對(duì)分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯(cuò)位相減法求出,運(yùn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版無(wú)人機(jī)租賃與培訓(xùn)合同3篇
- 2025版環(huán)保產(chǎn)業(yè)用地租賃協(xié)議書(shū)3篇
- 燃?xì)庠罹呔S修指南
- 2024年裝配式建筑土建工程承包合同范本3篇
- 大型農(nóng)場(chǎng)橋梁施工合同
- 道路鋪設(shè)工人合同
- 車站通風(fēng)管道重建施工合同
- 環(huán)保企業(yè)行政專員聘用合同
- 2024年生物科技產(chǎn)品研發(fā)及購(gòu)銷合同范本3篇
- 2024年版權(quán)許可合同標(biāo)的軟件與許可權(quán)
- 山東省濱州市2023-2024學(xué)年高一上學(xué)期1月期末考試 政治 含答案
- 電力行業(yè)電力調(diào)度培訓(xùn)
- 【MOOC】氣排球-東北大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 全力以赴備戰(zhàn)期末-2024-2025學(xué)年上學(xué)期備戰(zhàn)期末考試主題班會(huì)課件
- 《慶澳門(mén)回歸盼祖國(guó)統(tǒng)一》主題班會(huì)教案
- 物流公司自然災(zāi)害、突發(fā)性事件應(yīng)急預(yù)案(2篇)
- 《視頻拍攝與制作:短視頻?商品視頻?直播視頻(第2版)》-課程標(biāo)準(zhǔn)
- 公司戰(zhàn)略與風(fēng)險(xiǎn)管理戰(zhàn)略實(shí)施
- 2024年-2025年《農(nóng)作物生產(chǎn)技術(shù)》綜合知識(shí)考試題庫(kù)及答案
- 24.教育規(guī)劃綱要(2024-2024)
- 2023-2024學(xué)年蘇州市八年級(jí)語(yǔ)文上學(xué)期期末考試卷附答案解析
評(píng)論
0/150
提交評(píng)論