2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年遼寧省丹東市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.1

B.

C.

D.1n2

2.

3.

4.

5.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)6.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)7.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。

A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度

8.下列()不是組織文化的特征。

A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性9.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要

10.

11.

12.A.A.1B.2C.3D.4

13.

14.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合

15.

16.A.A.3B.1C.1/3D.0

17.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值18.()。A.

B.

C.

D.

19.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x20.

A.

B.

C.

D.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.

31.設(shè)y=x+ex,則y'______.

32.

33.

34.微分方程xdx+ydy=0的通解是__________。

35.36.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.

37.二階常系數(shù)線性微分方程y-4y+4y=0的通解為__________.

38.

39.40.三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.

43.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

47.48.將f(x)=e-2X展開為x的冪級(jí)數(shù).

49.

50.

51.求微分方程的通解.52.53.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.54.

55.求微分方程y"-4y'+4y=e-2x的通解.

56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

58.59.求曲線在點(diǎn)(1,3)處的切線方程.60.證明:四、解答題(10題)61.62.求曲線y=在點(diǎn)(1,1)處的切線方程.

63.

64.

65.(本題滿分10分)設(shè)F(x)為f(x)的-個(gè)原函數(shù),且f(x)=xlnx,求F(x).66.

67.設(shè)y=e-3x+x3,求y'。

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.

參考答案

1.C本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

因此選C.

2.C

3.B

4.B

5.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

6.C

7.D

8.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。

9.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

10.D解析:

11.B

12.D

13.D

14.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時(shí),兩平面平行;

當(dāng)時(shí),兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

15.A

16.A

17.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.

18.A

19.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

20.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

21.1/x

22.

23.

解析:

24.x-arctanx+C

25.

26.arctanx+C27.1

28.

本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.

29.

30.

31.1+ex本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

y'=(x+ex)'=x'+(ex)'=1+ex.

32.-sinx

33.11解析:

34.x2+y2=C

35.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

36.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

37.

38.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

39.

40.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

41.

42.由一階線性微分方程通解公式有

43.由等價(jià)無(wú)窮小量的定義可知44.由二重積分物理意義知

45.函數(shù)的定義域?yàn)?/p>

注意

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

47.

48.

49.

50.

51.

52.

53.

54.

55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

56.

列表:

說明

57.

58.

59.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論