版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年四川省南充市普通高校對口單招高等數(shù)學一自考模擬考試(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.函數(shù)等于().
A.0B.1C.2D.不存在
2.
3.當x→0時,sinx是sinx的等價無窮小量,則k=()A.0B.1C.2D.3
4.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
5.
6.
7.下列等式中正確的是()。A.
B.
C.
D.
8.力偶對剛體產(chǎn)生哪種運動效應()。
A.既能使剛體轉(zhuǎn)動,又能使剛體移動B.與力產(chǎn)生的運動效應有時候相同,有時不同C.只能使剛體轉(zhuǎn)動D.只能使剛體移動
9.在穩(wěn)定性計算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實際上壓桿屬于中柔度壓桿,則()。
A.并不影響壓桿的臨界壓力值
B.實際的臨界壓力大于Fcr,是偏于安全的
C.實際的臨界壓力小于Fcr,是偏于不安全的
D.實際的臨界壓力大于Fcr,是偏于不安全的
10.
11.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
12.A.A.0
B.
C.
D.∞
13.談判是雙方或多方為實現(xiàn)某種目標就有關(guān)條件()的過程。
A.達成協(xié)議B.爭取利益C.避免沖突D.不斷協(xié)商
14.
A.-e
B.-e-1
C.e-1
D.e
15.交換二次積分次序等于().A.A.
B.
C.
D.
16.
17.()。A.2πB.πC.π/2D.π/4
18.
19.
20.等于()。A.-1B.-1/2C.1/2D.1二、填空題(20題)21.
22.
23.24.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
25.
26.
27.
28.
29.
30.
31.
32.
33.f(x)=sinx,則f"(x)=_________。
34.
35.
36.
37.
38.
39.
40.
三、計算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.
45.
46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.47.
48.49.將f(x)=e-2X展開為x的冪級數(shù).50.求曲線在點(1,3)處的切線方程.51.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
52.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.53.求微分方程的通解.54.當x一0時f(x)與sin2x是等價無窮小量,則55.56.57.證明:
58.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.
四、解答題(10題)61.
62.
63.設(shè)y=(1/x)+ln(1+x),求y'。
64.計算65.66.設(shè)z=z(x,y)由x2+y3+2z=1確定,求
67.
68.
69.計算不定積分70.求由曲線y=x2(x≥0),直線y=1及Y軸圍成的平面圖形的面積·
五、高等數(shù)學(0題)71.已知函數(shù)f(x)在點x0處可導,則
=()。
A.一2f"(x0)
B.2f"(一x0)
C.2f"(x0)
D.不存在
六、解答題(0題)72.計算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.
參考答案
1.C解析:
2.B
3.B由等價無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價無窮小量的另一種表述形式,由于當x→0時,有sinx~x,由題設(shè)知當x→0時,kx~sinx,從而kx~x,可知k=1。
4.B
5.D
6.C
7.B
8.A
9.B
10.B
11.B
12.A本題考查的知識點為“有界變量與無窮小量的乘積為無窮小量”的性質(zhì).這表明計算時應該注意問題中的所給條件.
13.A解析:談判是指雙方或多方為實現(xiàn)某種目標就有關(guān)條件達成協(xié)議的過程。
14.C所給問題為反常積分問題,由定義可知
因此選C.
15.B本題考查的知識點為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應選B.
16.C
17.B
18.B
19.C
20.C本題考查的知識點為定積分的運算。
故應選C。
21.
本題考查的知識點為二元函數(shù)的偏導數(shù).
22.3
23.(-21)(-2,1)24.本題考查的知識點為二重積分的計算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此
25.1
26.
27.
28.1+2ln2
29.
30.e1/2e1/2
解析:
31.(03)(0,3)解析:
32.
本題考查的知識點為不定積分的湊微分法.
33.-sinx
34.
35.(1/3)ln3x+C
36.37.F(sinx)+C本題考查的知識點為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
38.
39.
解析:
40.3e3x3e3x
解析:
41.
42.
列表:
說明
43.解:原方程對應的齊次方程為y"-4y'+4y=0,
44.
45.
46.由二重積分物理意義知
47.由一階線性微分方程通解公式有
48.
49.50.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
51.
52.
53.54.由等價無窮小量的定義可知
55.
56.
57.
58.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%59.函數(shù)的定義域為
注意
60.
則
61.
62.
63.64.令u=lnx,v'=1,則本題考查的知識點為定積分的分部積分法.
65.
66.本題考查的知識點為求二元隱函數(shù)的偏導數(shù).
若z=z(x,y)由方程F(x,y,z)=0確定,求z對x,y的偏導數(shù)通常有兩種方法:
一是利用偏導數(shù)公式,當需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對x,y,z的偏導數(shù).上面式F(z,y,z)中將z,y,z三者同等對待,各看做是獨立變元.
二是將F(x,y,z)=0兩端關(guān)于x求偏導數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導數(shù),將z=z(x,y)看作中間變量,可以解出
67.
68.
69.本題考查的知識點為不定積分運算.
只需將被積函數(shù)進行恒等變形,使之成為標準積分公式形式的函數(shù)或易于利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版企業(yè)總經(jīng)理聘用協(xié)議
- 2025年進口熱帶水果專供協(xié)議書3篇
- 2025年度纖維原料加工合作合同模板3篇
- 2025年度船舶抵押貸款服務協(xié)議范本3篇
- 2025版二零二五年度消防設(shè)備租賃合同3篇
- 現(xiàn)代科技下的中醫(yī)家庭健康服務
- 教育與科技創(chuàng)新的未來路徑
- 電力行業(yè)從業(yè)人員安全用電培訓教程
- 二零二五年度創(chuàng)新型民間車輛抵押貸款合同范本4篇
- 基于2025年度計劃的研發(fā)合作與專利權(quán)共享協(xié)議3篇
- 【高空拋物侵權(quán)責任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- 二年級數(shù)學上冊100道口算題大全 (每日一套共26套)
- 物流無人機垂直起降場選址與建設(shè)規(guī)范
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 如何克服高中生的社交恐懼癥
- 聚焦任務的學習設(shè)計作業(yè)改革新視角
- 移動商務內(nèi)容運營(吳洪貴)任務三 APP的品牌建立與價值提供
- 電子競技范文10篇
- 食堂服務質(zhì)量控制方案與保障措施
評論
0/150
提交評論