版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年四川省自貢市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.A.A.e2/3
B.e
C.e3/2
D.e6
3.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)
4.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
5.
6.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
7.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
8.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為
A.3B.2C.1D.0
9.
10.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
11.
12.
13.
14.
15.
16.
A.
B.
C.
D.
17.A.A.-(1/2)B.1/2C.-1D.2
18.
19.()A.A.1B.2C.1/2D.-120.
21.
22.若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
23.
24.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
25.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
26.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性27.
28.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
29.
30.
31.
32.
33.
34.A.A.
B.
C.
D.
35.
36.A.A.xy
B.yxy
C.(x+1)yln(x+1)
D.y(x+1)y-1
37.
38.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
39.A.-3-xln3
B.-3-x/ln3
C.3-x/ln3
D.3-xln3
40.
41.
42.
43.A.A.
B.
C.
D.
44.
45.
46.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
47.
48.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
49.
50.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線二、填空題(20題)51.冪級(jí)數(shù)的收斂半徑為______.
52.
53.54.
55.
56.
57.設(shè)z=x2y+siny,=________。
58.設(shè)函數(shù)y=x3,則y'=________.
59.
60.冪級(jí)數(shù)的收斂半徑為______.
61.62.63.
64.
65.
66.設(shè)是收斂的,則后的取值范圍為______.67.設(shè)f(x)=esinx,則=________。
68.函數(shù)f(x)=x2在[-1,1]上滿足羅爾定理的ξ=_________。
69.微分方程y'=2的通解為__________。
70.三、計(jì)算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.
75.76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.78.
79.
80.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
82.
83.證明:
84.
85.86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.87.將f(x)=e-2X展開為x的冪級(jí)數(shù).88.求微分方程的通解.89.求曲線在點(diǎn)(1,3)處的切線方程.90.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)91.
92.計(jì)算二重積分
,其中D是由直線
及y=1圍
成的平面區(qū)域.93.
94.
95.96.計(jì)算97.(本題滿分8分)
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.設(shè)z=exy,則dz|(1,1)(1.1)=___________。
六、解答題(0題)102.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
參考答案
1.A
2.D
3.A
4.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
5.D
6.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
7.D
8.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。
9.A
10.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
11.C解析:
12.C
13.C
14.C
15.C
16.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
17.A
18.C解析:
19.C由于f'(2)=1,則
20.C
21.B解析:
22.B
23.B解析:
24.D
25.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
26.D
27.A
28.C
29.B
30.C
31.A
32.D解析:
33.D
34.C
35.C解析:
36.C
37.B
38.C
39.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.
40.D解析:
41.C
42.D
43.A
44.D解析:
45.D
46.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
47.C
48.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
49.D解析:
50.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
51.3
52.x=-3x=-3解析:
53.54.x—arctanx+C.
本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.
55.(-33)(-3,3)解析:
56.-2-2解析:57.由于z=x2y+siny,可知。
58.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2
59.22解析:
60.
解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
注意此處冪級(jí)數(shù)為缺項(xiàng)情形.
61.62.1.
本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
63.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
由于所給極限為“”型極限,由極限四則運(yùn)算法則有
64.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)
65.
66.k>1本題考查的知識(shí)點(diǎn)為廣義積分的收斂性.
由于存在,可知k>1.67.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。
68.0
69.y=2x+C
70.
71.
列表:
說(shuō)明
72.由二重積分物理意義知
73.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
74.
75.76.函數(shù)的定義域?yàn)?/p>
注意
77.
78.由一階線性微分方程通解公式有
79.
80.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
81.
82.
則
83.
84.
85.
86.
87.
88.89.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
90.由等價(jià)無(wú)窮小量的定義可知
91.92.所給積分區(qū)域D如圖5-6所示,如果選擇先對(duì)y積分后對(duì)x積分的二次積分,需要
將積分區(qū)域劃分為幾個(gè)子區(qū)域,如果選擇先對(duì)x積分后對(duì)y積分的二次積分,區(qū)域D可以表示為
0≤y≤1,Y≤x≤y+1,
因此
【評(píng)析】
上述分析通常又是選擇積分次序問(wèn)題的常見方法.
93
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024勞務(wù)派遣合同范本勞務(wù)派遣合同范本2
- 2024《技術(shù)轉(zhuǎn)讓合同范本》
- 2024【設(shè)計(jì)服務(wù)合同范本】軟件服務(wù)合同范本
- 2024正規(guī)材料采購(gòu)合同書范本
- 2024個(gè)人汽車租賃合同范本
- 2024市場(chǎng)商鋪?zhàn)赓U合同
- 2024室內(nèi)裝修裝飾工程掛靠合同書范本
- 深圳大學(xué)《有限元方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 保修合同范本(2篇)
- 安全試工合同(2篇)
- 公司工程碩士、博士聯(lián)合培養(yǎng)管理辦法
- 醫(yī)院優(yōu)質(zhì)服務(wù)考核表
- 東北大學(xué)考試《結(jié)構(gòu)力學(xué)ⅠX》考核作業(yè)參考324
- 《鄉(xiāng)土中國(guó)》之《名實(shí)的分離》-統(tǒng)編版高中語(yǔ)文必修上冊(cè)
- 戶外廣告牌施工方案53621
- 反假貨幣-外幣理論考試題庫(kù)(含答案)
- 幼兒園、中小學(xué)、病愈復(fù)課證明
- 檢驗(yàn)科生化項(xiàng)目臨床意義培訓(xùn)課件
- APQP產(chǎn)品先期策劃計(jì)劃流程圖
- 危險(xiǎn)化學(xué)品MSDS氨水(12%)
- 上海音樂(lè)出版社三年級(jí)上冊(cè)音樂(lè)教案全冊(cè)
評(píng)論
0/150
提交評(píng)論