2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

2.

3.A.dx+dy

B.

C.

D.2(dx+dy)

4.

5.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

6.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

7.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

8.

9.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

10.

11.A.A.f(2)-f(0)

B.

C.

D.f(1)-f(0)

12.

13.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。

A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

14.

15.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面16.A.A.

B.

C.

D.

17.A.-1

B.0

C.

D.1

18.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)

19.

20.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.設(shè)y=2x+sin2,則y'=______.28.29.

30.設(shè)區(qū)域D:x2+y2≤a2,x≥0,則

31.

32.

33.

34.通解為C1e-x+C2e-2x的二階常系數(shù)線性齊次微分方程是____.

35.微分方程y''+y=0的通解是______.

36.

37.

38.

39.

40.三、計(jì)算題(20題)41.42.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

44.求微分方程y"-4y'+4y=e-2x的通解.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.求微分方程的通解.

47.

48.

49.50.

51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).52.將f(x)=e-2X展開為x的冪級數(shù).53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

54.

55.56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

57.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.證明:59.求曲線在點(diǎn)(1,3)處的切線方程.60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.

62.

63.

64.

65.66.67.

68.求y"+2y'+y=2ex的通解.

69.

70.

五、高等數(shù)學(xué)(0題)71.某工廠每月生產(chǎn)某種商品的個(gè)數(shù)x與需要的總費(fèi)用函數(shù)關(guān)系為10+2x+

(單位:萬元)。若將這些商品以每個(gè)9萬元售出,問每月生產(chǎn)多少個(gè)產(chǎn)品時(shí)利潤最大?最大利潤是多少?

六、解答題(0題)72.

參考答案

1.D本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

2.A

3.C

4.B

5.C

6.A

7.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

8.B

9.D

10.B

11.C本題考查的知識點(diǎn)為牛頓一萊布尼茨公式和不定積分的性質(zhì).

可知應(yīng)選C.

12.D解析:

13.A

14.C解析:

15.C本題考查的知識點(diǎn)為二次曲面的方程。

將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。

16.C本題考查的知識點(diǎn)為微分運(yùn)算.

因此選C.

17.C

18.D本題考查的知識點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.

由于相應(yīng)齊次方程為y"+3y'0,

其特征方程為r2+3r=0,

特征根為r1=0,r2=-3,

自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)

故應(yīng)選D.

19.B

20.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

21.

22.

23.

24.

25.(-33)

26.27.2xln2本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.

本題中常見的錯誤有

(sin2)'=cos2.

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

(sin2)'=0.

相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

28.

本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.

注意此處冪級數(shù)為缺項(xiàng)情形.

29.1.

本題考查的知識點(diǎn)為反常積分,應(yīng)依反常積分定義求解.

30.

解析:本題考查的知識點(diǎn)為二重積分的性質(zhì).

31.x--arctanx+C本題考查了不定積分的知識點(diǎn)。

32.2

33.2/3

34.35.y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根為r=±i,所以方程的通解為y=C1cosx+C2sinx.

36.3

37.

本題考查的知識點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見的錯誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

38.1

39.x=2x=2解析:

40.

41.

42.

43.

44.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

45.函數(shù)的定義域?yàn)?/p>

注意

46.

47.48.由一階線性微分方程通解公式有

49.

50.

51.

列表:

說明

52.53.由等價(jià)無窮小量的定義可知

54.

55.

56.由二重積分物理意義知

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

60.

61.

62.

63.

64.65.

66.

67.

68.相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-1(二重實(shí)根);齊次方程的通解為Y=(C1+C2x)e-x

相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論