版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.2.把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.3.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.4.在直角梯形中,,,,,點為上一點,且,當(dāng)?shù)闹底畲髸r,()A. B.2 C. D.5.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.76.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.7.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.8.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.9.的展開式中,含項的系數(shù)為()A. B. C. D.10.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.11.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.12.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.5050二、填空題:本題共4小題,每小題5分,共20分。13.某市高三理科學(xué)生有名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為__________.14.在等比數(shù)列中,,則________.15.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.16.設(shè)集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學(xué)校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.18.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.19.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.20.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.21.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.22.(10分)設(shè)點,動圓經(jīng)過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設(shè),,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先由是偶函數(shù),得到關(guān)于直線對稱;進而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時,由得,所以,解得;當(dāng)即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.2.D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).3.A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.4.B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設(shè),則,即,又因為所以,所以,當(dāng)時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.5.B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題6.A【解析】
由題可得出的坐標(biāo)為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標(biāo)為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.7.B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.8.B【解析】
分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.9.B【解析】
在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.10.D【解析】
設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點到直線的距離從而.令當(dāng)時,;當(dāng)時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.11.D【解析】
由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.12.C【解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.14.1【解析】
設(shè)等比數(shù)列的公比為,再根據(jù)題意用基本量法求解公比,進而利用等比數(shù)列項之間的關(guān)系得即可.【詳解】設(shè)等比數(shù)列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數(shù)列基本量的求解方法,屬于基礎(chǔ)題.15.【解析】
由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.16.【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)分布列見解析,期望為.【解析】
(1)甲同學(xué)至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.18.(1)(2)【解析】
分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時取等號.此時,其最大值為.點睛:該題考查的是有關(guān)三角形的問題,涉及到的知識點有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進行運算即可求得結(jié)果.19.(1);(2)【解析】
(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設(shè)直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【詳解】(1)因為關(guān)于軸對稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2)設(shè)橢圓上的點(),設(shè)直線PA,PB的傾斜角分別為,斜率為又∴.,,(不妨設(shè)).故當(dāng)且僅當(dāng),即時等號成立【點睛】本題考查了直線和橢圓綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.20.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實數(shù)a的取值范圍為試題解析:(I)當(dāng)時,化為,當(dāng)時,不等式化為,無解;當(dāng)時,不等式化為,解得;當(dāng)時,不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個頂點分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為21.(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當(dāng)時,由,解得;當(dāng)時,由,解得;當(dāng)時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時,,所以.因為,由,可知,所以,當(dāng)且僅當(dāng),,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對于不等式,函數(shù)知識的綜合應(yīng)用.22.(1);(2)見解析.【解析】
(1)已知點軌跡是以為焦點,直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具設(shè)計師童心未泯創(chuàng)意無限
- 文化創(chuàng)意技術(shù)工作總結(jié)
- 整形外科護士全年工作總結(jié)
- 證券行業(yè)衛(wèi)生規(guī)范
- 《愛勞動講衛(wèi)生》課件
- 2021年高考語文試卷(上海)(春考)(解析卷)
- 2024年濮陽職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 2024年美術(shù)的教案
- 農(nóng)村房屋問題協(xié)議書(2篇)
- 出境游全程無憂旅游合同
- 網(wǎng)絡(luò)加速器提供商服務(wù)合同
- 2024版新能源汽車充電站電線電纜采購合同2篇
- 轉(zhuǎn)讓押金協(xié)議合同范例
- 國家藥包材檢驗標(biāo)準(zhǔn)培訓(xùn)
- 腫瘤科危急重癥護理
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級英語期末模擬試卷(一)(含答案)
- 2024-2030年中國加速器行業(yè)發(fā)展趨勢及運營模式分析報告版
- 護理查房深靜脈置管
- 運動障礙護理查房
- 計算與人工智能概論知到智慧樹章節(jié)測試課后答案2024年秋湖南大學(xué)
- 2024年度油漆涂料生產(chǎn)線租賃合同3篇
評論
0/150
提交評論