2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年山西省忻州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

A.(-2,2)

B.(-∞,0)

C.(0,+∞)

D.(-∞,+∞)

2.設(shè)y=5x,則y'等于().

A.A.

B.

C.

D.

3.

4.

5.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

6.

7.

8.

9.

10.

11.設(shè)z=ysinx,則等于().A.A.-cosxB.-ycosxC.cosxD.ycosx

12.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

13.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

14.()A.A.1B.2C.1/2D.-1

15.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值

16.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

17.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。

A.[一1,1]B.[0,2]C.[0,1]D.[1,2]

18.

19.

20.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

21.當(dāng)x→0時(shí),3x是x的().

A.高階無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量D.低階無(wú)窮小量

22.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

23.

24.A.A.

B.

C.

D.

25.A.A.1B.2C.3D.4

26.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1

27.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

28.

29.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2

30.

31.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

32.

33.

34.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)

35.函數(shù)z=x2-xy+y2+9x-6y+20有()

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

36.

37.()。A.e-2

B.e-2/3

C.e2/3

D.e2

38.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

39.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)

40.

41.

42.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)

43.設(shè)f(x)在點(diǎn)x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

44.A.A.2B.-1/2C.1/2eD.(1/2)e1/2

45.

46.

47.級(jí)數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

48.

49.

50.

二、填空題(20題)51.

52.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為_(kāi)_________.53.

54.

55.

56.

則b__________.

57.

58.

59.曲線y=2x2-x+1在點(diǎn)(1,2)處的切線方程為_(kāi)_________。

60.

61.

62.

63.微分方程y'+9y=0的通解為_(kāi)_____.64.

65.設(shè)f(x)=xex,則f'(x)__________。

66.

67.

68.

69.

70.過(guò)原點(diǎn)且與直線垂直的平面方程為_(kāi)_____.三、計(jì)算題(20題)71.

72.證明:73.求曲線在點(diǎn)(1,3)處的切線方程.74.求微分方程的通解.75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).76.77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.78.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

79.

80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).81.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.82.

83.84.

85.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.86.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則87.88.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

90.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)91.證明:在區(qū)間(0,1)內(nèi)有唯一實(shí)根.

92.

93.求

94.

95.

96.

97.98.

99.

100.求函數(shù)的二階導(dǎo)數(shù)y''五、高等數(shù)學(xué)(0題)101.

六、解答題(0題)102.

參考答案

1.A

2.C本題考查的知識(shí)點(diǎn)為基本初等函數(shù)的求導(dǎo).

y=5x,y'=5xln5,因此應(yīng)選C.

3.C

4.B

5.C

6.B

7.A

8.B

9.A

10.A解析:

11.C本題考查的知識(shí)點(diǎn)為高階偏導(dǎo)數(shù).

由于z=ysinx,因此

可知應(yīng)選C.

12.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。

13.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

14.C由于f'(2)=1,則

15.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

16.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

17.B∵一1≤x一1≤1∴0≤x≤2。

18.C

19.A解析:

20.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

21.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小量β與無(wú)窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

22.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

23.B解析:

24.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得

25.D

26.C

27.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

28.A

29.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.

當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得

可知f'(1)=1/4,故應(yīng)選B.

30.B

31.D

32.B

33.A

34.C則x=0是f(x)的極小值點(diǎn)。

35.D

36.C解析:

37.B

38.D

39.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

40.C

41.D

42.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。

43.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。

44.B

45.A

46.D

47.A

48.B

49.D

50.B

51.2/352.[-1,1

53.

本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.

54.(12)(01)

55.In2

56.所以b=2。所以b=2。

57.x=-3

58.

59.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)

60.

61.

62.63.y=Ce-9x本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.

分離變量

兩端分別積分

lny=-9x+C1,y=Ce-9x.

64.

65.(1+x)ex

66.

67.

68.

解析:

69.-ln|3-x|+C70.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

71.

72.

73.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

74.

75.

列表:

說(shuō)明

76.

77.函數(shù)的定義域?yàn)?/p>

注意

78.

79.

80.

81.

82.

83.84.由一階線性微分方程通解公式有

85.由二重積分物理意義知

86.由等價(jià)無(wú)窮小量的定義可知

87.

88.

89.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

90.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

91.本題考查的知識(shí)點(diǎn)為閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理;利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.

證明方程f(x)=0在區(qū)間(a,b)內(nèi)有唯一實(shí)根,往往分兩步考慮:(1)根的存在性:常利用連續(xù)函數(shù)在閉區(qū)間上的零點(diǎn)定理證明.(2)根的唯一性:常利用導(dǎo)數(shù)符號(hào)判定函數(shù)在給定的區(qū)間單調(diào)增加或減少.

92.

93.本題考查的知識(shí)點(diǎn)為極限的四則運(yùn)算法則.

由于分母中含有根式,可以先將分子、分母同乘以

94.

95.

96.97.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.

這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得

得出A的方程,可解出A,從而求得f(x).

本題是考生感到困難的題目,普遍感到無(wú)從下手,這是因?yàn)椴粫?huì)利用“定積分表示-個(gè)數(shù)值”的性質(zhì).

這種解題思路可以推廣到極限、二重積

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論