版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省運(yùn)城市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.已知作用在簡(jiǎn)支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
4.
5.當(dāng)x→0時(shí),x2是2x的A.A.低階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.高階無窮小6.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
7.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
8.
9.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
10.
11.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
12.
13.
14.A.A.1
B.1/m2
C.m
D.m2
15.
16.設(shè)函數(shù)y=2x+sinx,則y'=
A.1+cosxB.1-cosxC.2+cosxD.2-cosx
17.
18.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
19.
20.
二、填空題(20題)21.二元函數(shù)z=xy2+arcsiny2,則=______.22.23.24.25.______。
26.
27.若f'(x0)=1,f(x0)=0,則
28.
29.
30.
31.
32.
33.
34.設(shè)y=x2+e2,則dy=________
35.
36.
37.微分方程y''+6y'+13y=0的通解為______.38.
39.
40.設(shè)y=1nx,則y'=__________.三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.42.43.求微分方程的通解.44.
45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
47.求微分方程y"-4y'+4y=e-2x的通解.
48.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.49.50.51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
53.
54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則55.
56.證明:
57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
58.
59.求曲線在點(diǎn)(1,3)處的切線方程.60.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)61.求微分方程y"-y'-2y=ex的通解。
62.
63.
64.
65.
66.y=xlnx的極值與極值點(diǎn).
67.
68.(本題滿分10分)
69.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
70.五、高等數(shù)學(xué)(0題)71.
;D:x2+y2≤4。
六、解答題(0題)72.
參考答案
1.B
2.B解析:
3.D
4.C
5.D
6.C
7.C
8.A
9.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
10.C解析:
11.C
12.C
13.B
14.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無窮小代換.
解法1由可知
解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此
15.D解析:
16.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.
17.A
18.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
19.C
20.C解析:21.y2
;本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
只需將y,arcsiny2認(rèn)作為常數(shù),則22.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
23.24.
本題考查的知識(shí)點(diǎn)為不定積分計(jì)算.
25.本題考查的知識(shí)點(diǎn)為極限運(yùn)算。
所求極限的表達(dá)式為分式,其分母的極限不為零。
因此
26.227.-1
28.
29.
30.
31.[-11)
32.4π本題考查了二重積分的知識(shí)點(diǎn)。
33.y=x3+134.(2x+e2)dx
35.[-11]
36.37.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
38.
39.11解析:
40.
41.
42.
43.
44.
則
45.函數(shù)的定義域?yàn)?/p>
注意
46.
列表:
說明
47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
51.
52.由二重積分物理意義知
53.
54.由等價(jià)無窮小量的定義可知55.由一階線性微分方程通解公式有
56.
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
58.59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
60.
61.62.本題考查的知識(shí)點(diǎn)為參數(shù)方程的求導(dǎo)運(yùn)算.
【解題指導(dǎo)】
63.
64.
65.
66.y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí)y'<0;當(dāng)e-1<x時(shí)y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時(shí),y'<0;當(dāng)e-1<x時(shí),y'>0.可知x=e-1為y=xlnx的極
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行貸款委托代理合同(2篇)
- 巴西課件 湘教版
- 人教版南轅北轍課件
- 蘇教版江蘇省揚(yáng)州市揚(yáng)州中學(xué)教育集團(tuán)樹人學(xué)校2023-2024學(xué)年高一上學(xué)期期中數(shù)學(xué)試題
- 老舍《茶館》課件
- 外科護(hù)理課件
- 基層教育 課件
- 西京學(xué)院《中華才藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《外國(guó)文學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《中外電影史》2021-2022學(xué)年期末試卷
- 能源調(diào)度中心方案
- 2024年高考英語模擬試卷3(九省新高考卷) (二)
- 《建筑工程制圖》題庫(kù)
- 工程聯(lián)系單表格樣本
- 新媒體運(yùn)營(yíng)智慧樹知到期末考試答案章節(jié)答案2024年黑龍江職業(yè)學(xué)院
- 耳鼻喉科病例討論模板
- 《道路行駛記錄儀檢測(cè)裝置校準(zhǔn)規(guī)范-公示稿》
- 低分學(xué)生提升計(jì)劃小學(xué)數(shù)學(xué)
- 滑坡泥石流-高中地理省公開課金獎(jiǎng)全國(guó)賽課一等獎(jiǎng)微課獲獎(jiǎng)
- 人工智能職業(yè)生涯規(guī)劃報(bào)告總結(jié)
- 主題班隊(duì)會(huì)教學(xué)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論