光學(xué)相干理論的應(yīng)用_第1頁(yè)
光學(xué)相干理論的應(yīng)用_第2頁(yè)
光學(xué)相干理論的應(yīng)用_第3頁(yè)
光學(xué)相干理論的應(yīng)用_第4頁(yè)
光學(xué)相干理論的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩57頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

CHAPTERFOURCHAPTERFOURApplicationsofopticalcoherencetheoryOlgaKorotkovaa,GregGburbaDepartmentofPhysics,UniversityofMiami,CoralGables,FL,UnitedStatesbDepartmentofPhysicsandOpticalScience,UNCCharlotte,Charlotte,NC,UnitedStatesDedicationThisarticleiswritteninthememoryofProfessorEmilWolf.Theideasheintroducedandthecollaborationshefosteredcontinuetohaveanimpacttoday.OurarticleisaspecialtributetoEmilWolfwho,inadditiontoestablishingthemajortheoreticalconceptsofthisfield,hasalsocontributedtothedevelopmentitsapplications,includingdiffractiontomography,beamshaping,andclassicalimaging,amongothers,andhaspromotedendlessideasforothertechnologiessuchasfree-spacecommunicationsandX-raycrystallography.ContentsIntroduction 44Coherencefundamentals 45Astronomy 48Intensityinterferometry 53Ghostimaging 55Opticalcoherencetomography 57Tomography 60Beampropagationinnaturalturbulentmedia 62Partiallycoherentimaging 67Specklemitigationincoherentopticalsystems 70Inertialconfinementfusion 75Beamshaping 78Trappingandmanipulation 81Coherencebeyondlightwaves 83Electromagneticcoherence 85Sunlightcoherenceandphotovoltaics 88Concludingremarks 90References 92AbstractOverthelastcentury,classicalopticalcoherencehasdevelopedfromavaguelyrelatedconceptsintoastandingalongbranchofopticsand,morebroadly,ProgressinOptics,Volume65 #2020ElsevierB.V. 43ISSN0079-6638 Allrightsreserved./10.1016/bs.po.2019.11.004PAGE104OlgaKorotkovaandGregGburPAGE104OlgaKorotkovaandGregGburPAGE103ApplicationsofopticalcoherencePAGE103Applicationsofopticalcoherencetheoryelectromagnetics,thathasresultedinanumberofgroundbreakingdiscoveriescerningthenatureoflight,itsevolutionandinteractionwithmatter.Whilethetheoret-icaldevelopmentsofthisfieldhavebeenwelldocumentedinanumberofexcellentmonographsandreviewarticles,itsapplicationshaveneverbeenproperlysummarized.Inthisreviewwecoverbroadlyemployed,currentlydeveloping,andyetuntappedpracticaloutcomesofopticalcoherencetheoryusedinotherfieldsofscience,technol-ogy,andmedicine.Keywords:Coherence,Opticalcoherencetomography,Imaging,Speckle,ElectromagneticsIntroductionoftoofaanditwastheoftoofasofononoftheoftheandaButEmilWolfintroducedtwoimportantideasinthe1950sthatmaybeconsideredfoundationalpillarsofopticalcoherencetheory.Thefirstofpillarsistheemphasisonopticsintermsofobservablequantities(Wolf,1954):thatopticscan,andshould,bebasedonquantitiesthatcanbemeasured,likeintensitiesandcorrelationfunctions,ratherthanfieldswhichoscillatefastinthevisiblerangetobedirectlyobserved.Thesecondofthesepillarsistherecognitionthatthecorrelationfunctionsoflightalsosatisfytheirwaveequations,nowreferredtoastheWolfequations(Wolf,1955),showsthatthestatisticalpropertiesoflightfollowpredictablelawsthatbeusedtoimproveapplications,orcreatenewonesentirely.Wemayarguethattheuseofopticalcoherencetoimproveexistingapplicationsordevelopnewoneshasbecomeanothermajorcomponentofthesubject,takingadvantageofthenowwell-establishedphysicalthatWolfintroduced.Thoughtheearlyyearsofopticalcoherencefocusedonunderstandingthephysicsoffluctuatingfields,therehasanincreasingemphasisontailoringthesefluctuationstoimprovesensing,imaging,communications,opticaltrapping,andotherpracticaltasks.However,therehasnottodatebeenacomprehensivereviewofapplications,andthisarticleaimstoprovideone.Webeginbysummarizingkeyresultsfromclassicalopticalcoherencetheory,andthenreviewavarietyofapplications.Somearewell-established,evenpredatingtheformaltheoryofopticalcoherence,andothersareisingbutstillworksinprogress.Itisworthnotingthateachapplicationsomewhatdifferentcoherenceneeds,andresearchersinthedifferenthavedevelopedtheirownpartiallycoherentsources.Ourstudyofthecationsofcoherencetheoryisthereforealsoastudyofthemethodswhichpartiallycoherentsourcescanbesynthesized.CoherencefundamentalsWebeginwithastochasticcomplexscalarwavefieldU(r,t)thatsatisfiesthewaveequation,2 1?2Uer,tTrUer,tT-c2 ?t2 ?0, (1)whereristhepositionvector,tisthetime,andcisthevacuumspeedoflight.WecharacterizethecoherencepropertiesofthefieldbythemutualcoherencefunctionΓ(r1,r2,τ),definedasΓer1,r2,τT?hU*er1,tTUer2,t+τTi, wherethebracketsh?irepresentatimeaverageoranensembleaverage,andtheasteriskrepresentsthecomplexconjugate.Theergodichypothesisistypicallyassumed,inwhichcasethetwoaveragesareequivalent.Thefieldisalsotakentobestatisticallystationary:thatis,itsstatisticalpropertiesareindependentoftheoriginoftime.Thisappliestomoststeady-statelightsources,suchasaCWlaser,astar,oralightbulb.Atruestatisticallystation-arysourceisindependentoftheoriginoftimeforcorrelationfunctionsoforders;weusethereducedassumptionofstatisticallystationaryinthesense,aforwhichitisonlyassumedthattheaverageofthefieldisindepen-dentoftimeandthatthemutualcoherencefunctiononlydependsonthetimedelayτ.FromthedefinitionofthemutualcoherencefunctionitfollowsthataverageintensityI(r)ofthefieldisgivenbyIerT?Γer,r,0T: (3)aAmongEmilWolfandhiscolleagues,“inthewidesense”hasbeenabitofarunningjoke,oftensaidinthesamesenseas“very,veryapproximately,”andusedforalmostanything,inopticsorineverydaylife.EvenEmil’swifeMarlieswoulduseitfromtimetotime.Withthis,wemayrewritethemutualcoherencefunctioninthesuggestiveform,?????????????????Γer1,r2,τT? Ier1T Ier2Tγer1,r2,τT, whereγ(r1,r2,τ)iscalledthecomplexdegreeofcoherence?????????????????γer1,r2,

Γr,r,ττT三 e12T????p?τT三 e12T1 212Thisquantitycanbeshowntobeconstrainedbytheinequality0jγ(r1,r2,τ)j1,01Theofγ(r1,τ)istoofr1r2aτ.Atheoftwoinandbeas2jUer1,tT+Uer2,t+2

Ir+Ir?eT e2+????????Reγr1,?eT e2whereRestandsfortherealpart.Asalreadynoted,afoundationalresultofcoherencetheoryistheequations,whichfollowfromthewaveequationandthedefinitionofmutualcoherencefunction.Theyarewrittenas2 1?2Γer1,r2,τTr1e1,2,τT-c2 τ2 ?0, (7)2 1?2Γer1,r2,τTr2e1,2,τT-c2 τ2 ?0, (8)iwherer2representstheLaplacianwithrespecttori,withi?1,2.Theseequationsarestraightforwardtoderive,andthederivationtakesonlyailines;nevertheless,theyweremetwithsomesurpriseandresistanceoriginallyintroduced.bTheWolfequationsdemonstratethatthestatisticalpropertiesoflight,intheformofthemutualcoherencefunction,alsoagateasawave.However,itistobenotedthatneithertheintensitynorcomplexdegreeofcoherencethemselvessatisfyawaveequation.Inopticalphysics,calculationsaretypicallydonewithmonochromaticwaves,forsimplicity.Incoherencetheory,ItisalsoconvenienttobWhenWolffirstpresentedhisderivationtoMaxBorn,Bornreplied,“Wolf,youhavealwaysbeensuchasensiblefellow,butnowyouhavebecomecompletelycrazy!”Aftersomethought,Bornacceptedtheresult(Wolf,1983).inthespace–frequencydomain,usingthecross-spectraldensityW(r1,r2,definedasthetemporalFouriertransformofΓ(r1,r2,τ),11∞Wer1,r2,ωT?2π∞-

Γer1,r2,

-iωτ

dτ, (9)whereωistheangularfrequency.Inthisform,thecross-spectraldensitybereadilyshowntosatisfyapairofHelmholtzequations,2 2r1Wer1,r2,ωT+kWer1,r2,ωT?0, (10)2 2r2Wer1,r2,ωT+kWer1,r2,ωT?0, (11)?wherekω/c.?Thespectraldensity(orspectralintensity)ofthefieldatfrequencyωgivenbytheequal-positionvalueofthecross-spectraldensity,Ser,ωT?Wer,r,ωT: (12)Itistobenotedthat,fromEq.(9),wemaythensaythatthespectralatapointrisgivenbythetemporaltransformofthefunctionΓ(r,r,τ);thisisintheWiththeofspectralwemayalsowritethe???????????????????????????????????????????Wer1,r2,ωT? Ser1,ωT Ser2,ωTμer1,r2,ωT, whereμ(r1,r2,ω)iscalledthespectraldegreeofcoherence,andmaybedefinedμer1,r2,

Wr,r,ωωT? e12 T 12????????????????ωT? e12 T 12Aswiththecomplexdegreeofcoherence,thespectraldegreeofcoherencesatisfiesaninequality:0jμ(r1,r2,ω)j1.Thelimitjμj?0isincoherent,andjμj?1iscoherent.Thephysicsofthecross-spectraldensityisdifficulttodeducefromEq.(9),asitistheFouriertransformofacorrelationfunction.Butingroundbreakingpaperin1982,Wolfshowedthatthecross-spectraldensitycanitselfbeexpressedasacorrelationfunction,intheformWer1,r2,ωT?hU*er1,ωTUer2,ωTiω, (15)ωwhereh?iωrepresentsanaverageoveraspeciallyconstructedensembleofmonochromaticfieldsU(r,).Thisensembleisnotarealensemble,ωbutamathematicalone;however,itisalwayspossibletointroducesuchanensembleforanycross-spectraldensity.Furthermore,thecross-spectraldensityisaHermitian,nonnegativedefinitefunction.WolfshowedthatitcanthereforebewritteninMercer-typeexpansion(Mercer,1909)oftheform,nWe1,2,T?λnωT*1,ω?nr2,ω, (16)nnwhereλn(ω)20representtheeigenvaluesofthecross-spectraldensity?n(r,ω)theorthonormaleigenfunctions,whichsatisfyaFredholmintegralequation,DZWer1,r2,ωT?ner1,ωTdNr1?λneωT?ner2,ωT: (17)DTheontheofDandtheNofandthesumnmaybeorandonetheistobetheofancalandtheisisasthemodeasitisanofentIthasbeentofortheofandThissectionhassummarizedsomeofthekeyquantitiesusedinthedescriptionofpartiallycoherentlight.MoreinformationcanbefoundMandelandWolf(1995),BornandWolf(1999),andWolf(2007).AstronomyTheearliestfieldinwhichcoherenceeffectswereusedtomakemeasurementsisastronomy,andinfactthesemeasurementslongpredatetheformaltheoryofopticalcoherence.Wenote,inparticular,theuseinterferometrytodeterminethesizeofstellarobjectsthatcanotherwisenotberesolvedbyordinarytelescopes.TheideawasfirstputforthbyMichelson(1890a)in1890,inalecturetitled“Measurementbylightwaves.”Init,Michelsonnotedthatopticaldevicessuchastelescopesandmicroscopesareusedforthreetasks:Resolvingsmall,closelypackedobjects,(2)Imagingthestructureofobjects,and(3)Determiningtheprecisepositionoftheseobjects.For3rdcase,heobservedthattheinterferencepatternproducedbylightthesourceisthemosthelpful,andthatbyblockingthecentralapertureofanimagingdeviceandleavingonlytwoslitsontheextremeedges,onecananinterferometricmeasureofpositionthatissuperiortowhatcanachievedbythedeviceundernormaloperation.Inessence,hesuggestsingthetelescopeintoaYoung-typeinterferometerfordeterminingchangesinphaseduetoposition.Michelson(1890b)elaboratedontheseideasthatsameyearinapapertitled,“OntheApplicationofInterferenceMethodstoMeasurements,”andprovidedcurvesforthevisibilityofthefringesonewouldexpectfromanextendedsource.Remarkably,henoopticalcoherencetheorytoworkwith,butthroughsimpleshowedhowthevisibilitycurvesoflinear,circular,ordoublesourcesdependonthesourcesizeandgeometry,allowingtheroughstructureastellarobjecttobededucedfrominterference.HealsoproposedtheconceptofwhatwouldbecomeknownastheMichelsonstellarinterferom-eter,doingawaywiththelensofatelescopeentirelyandinsteadcollectinglightusingwidelyseparatedmirrors.Ashenoted(Michelson,1890b),Thus,whileitwouldbemanifestlyimpracticabletoconstructobjectivesmuchlargerthanthoseatpresentinuse,thereisnothingtopreventincreasingthedis-tancebetweenthetwomirrorsoftherefractometertoevententimesthissize.Therealizationofthisplanwouldtakeseveraldecadestoaccomplish.But1920,MichelsonworkedwithGeorgeElleryHale(Michelson,1920)performmeasurementswiththe40-in.refractingtelescopeatObservatoryandthenthe60-and100-in.reflectingtelescopesatWilsonObservatory.Thetwoaperturemethodwasusedonthetelescopes,andsuccessfulmeasurementsweremadeofCapellaintheconstellationofAuriga,whichhadbeenshownthroughspectroscopicmethodstobedoublestar.Anderson(1920)presentedthedetailedresultsofthatmeasure-mentthesameyear.Thenextyear,MichelsonandPease(1921)performedmeasurementswiththefirstcustom-builtMichelsonstellarinterferometer,usingittoestimatethesizeofthestarBetelgeuse.TheiroriginalsketchofinterferometerisshowninFig.1.Michelson’smethodwasfinallyputonarigoroustheoreticalbasisZernike(1938),whoalsointroducedtheconceptofthedegreeofcoher-ence.WeexplainthemethodusingthevanCittert–Zerniketheoremthespace–frequencydomain,asfollows.eTheevolutionofthecross-spectraldensityfromtheplanez?0toaplanez>0maybemodeledusingFresnelpropagation,intheformeWer,r,z,ωT?1ZZWλ2λ2

e0,r0,ωeik1r02ik2r02d2r0d2r0,12ezT

01

2z 1 2z 2

1 2(18)MM1M2M3bM4dc0 5 101520aFEETFig.1OriginalillustrationofMichelson’sstellarinterferometer.FromMichelson,A.A.,&Pease,F.G.(1921).Measurementofthediameterofalpha-Orionisbytheinterferometer.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,7,143–146.whereW0(r10,r20,ω)theinthesourceWethatthesourceisspatiallyincoherentandmaybeasWωT?C2S0er01,-whereδ(2)isthetwo-dimensionaldeltafunction,S0representsthespectraldensity,andCisaparameterwithunitsoflengthfordimensionalconsistency.Onsubstitutionandintegration,wehaveWer1,r2,z,ωT?2e2z12S0er,z12dr: CWer1,r2,z,ωT?2e2z12S0er,z12dr: eλzTThecross-spectraldensityobservedatanyplaneisthereforeproportionaltheFouriertransformofthesourcespectraldensity.Foracircularsourceradiusawithconstantspectraldensity,theFouriertransformmaybereadilyevaluatedandthespectraldegreeofcoherenceμ(r1,r2,z,ω)takesonthesimpleform,Jkr1-r21μr,r,z,ωTJkr1-r21

: (21)12 2z1

kzr1-r2aInthisexpression,a=z?sineθT,whereθistheangularsizeofthesource.ThefirstzerooftheBesselfunctionJ1(u)appearswhenu?3.83;bymea-suringtheseparationj1-2jatwhichinterferencefringesfirstdisappear,isthenpossibletodeterminethesourcesize.Asimilarcalculationcandoneinthetimedomain,inwhichtheequaltimedegreeofcoherencej(r1,r2,z)replacesμ(r1,r2,z,ω),andthewavenumberkisreplacedbythemeanwavenumber.Stellarinterferometrywasimplementedfrom1998to2006attheObservatory,operatingatinfraredwavelengths;the85mbaselinebetweenthetwinKecktelescopeshadthepotentialforextremelyhighresolution.However,fundingissueskepttheinterferometerfrombeingfullypleted,andtheprojectwasputonholdin2006.Forvisiblelight,Michelson’sdesignislimitedbytheneedtodirectlycombinetheopticalsignals.Astheseparationofthemirrorsbecomeslarger,atmosphericeffectsstarttodistortthephasesofthefields,washingoutdelicateinterferencepatterns.Forthisreason,long-baselineinterferometricexperimentstendtoapplyintensityinterferometry,discussedinthesection.However,thereweretwoplanstoputMichelsoninterferometersinspace,wheretheatmospherewouldnotbeafactor.TheStarLightmission(Blackwoodetal.,2003)wouldhaveusedtwoseparatecraftsastheinter-ferometer,withabaselinethatcouldvaryfrom35to125m.Unfortunatelythismission,andthelaterSpaceInterferometryMission(SIM)(KahnAaron,2003),werebothdefundedbeforelaunch.ej2-1Michelson’sstrategyusesquasimonochromaticlight,andforstellarsourcesisthereforeonlytakingadvantageofpartoftheavailablespectrum.In1995,James,Kandpal,andWolfdemonstratedthatthespectralpropertiesoflightcanalsobeemployedinabroadbandversionofMichelson’stech-nique.Intheirmethod,theymadethreeassumptionsaboutthesource,allreasonableforastronomicalobjects:(1)Itisaquasihomogeneoussecondarysource,(2)Itobeysthescalinglaw(Wolf,1986),and(3)Thenormalizedspectrumofthesourceisconstantthroughoutitsdomain.ThelightfromthesourceisassumedtopassthroughaYoung-typeinterferometer(forthe-oreticalcalculations,effectivelythesameasaMichelsonstellarinterferome-ter),anditsspectrumismeasuredatasinglepointontheobservationscreen.Followingthepreviousanalysis,thespectraldegreeofcoherenceμej2-10μ12ωT?

z0eT

: (22)IncontrastwiththeMichelsonstellarinterferometer,wefixthepinholesep-arationandinsteadconsiderthechangesinthespectrumattheobservationplane.ThisquantityisgivenbyS,ωT?2S1TeT1+μ12ωTjcos?β12eT+eR2-R1=cg:(23)HereS(1)representsthespectrumatrwhenonlyonepinholeisopen,representsthephaseofμ12(ω),andRjisthedistancefromthejthpinholetheobservationscreen.Becauseμ12(ω)dependsonthesourcestructureandthefrequency,spectrumwillpossessoscillationsthatcanbeusedtodeterminedetailsthesource.Fig.2illustratesanexample,inwhichthesourceistakentobedoublestar.Thefastmodulationisduetostellarseparation,andtheslowmodulationisduetostellarsize.ThismethodwasdemonstratedexperimentallyforasinglesourceVicalvi,Spagnolo,andSantarsiero(1996)usingaslitilluminatedbyastenlamp,andexcellentagreementwiththeorywasfound.ThisspectralinterferencemethodwastestedusingactualstarlightbyKandpalet(2002),andthemeasuredsizesofstarswereinexperimentalagreementknownvaluesdeterminedbyothermeans.Modulationduetosourcesize:Modulationduetoseparation:Interferencefringes:2Modulationduetosourcesize:Modulationduetoseparation:Interferencefringes:S(PS(P,w)2S(1)(P,w)10

1 2 3 4 5w(s–1)??xFig.2Thespectrumproducedbyadoublestar,eachofangularradiusα31-8andwithangularseparationΔ3107,withpathdifference10mandbaseline5m.AdaptedfromJames,D.F.V.,Kandpal,H.C.,&Wolf,E.(1995).Anewmethodfordetermin-ingtheangularseparationofdoublestars.TheAstrophysicalJournal,45,406??xIntensityinterferometryOneareawhereMichelson-typeinterferometryhasbeenusefulisinradioastronomy,wherebaselinescanberealizedoverkilometers.Radioantennascanconveythereceivedoscillatingsignallongdistancesovercables,allowinginterferencepatternstoberecordedelectronically.Intheearlydaysofradioastronomy,however,itwasthoughtthatbaselinesofhundredsoreventhousandsofkilometerswouldbenecessarytoproperlyresolvethesizeofradiostars.Thephasestabilityofthesignalswouldbedif-ficultorimpossibletomaintainoversuchdistances,andadifferentapproachwouldberequired.Intheearly1950s,HanburyBrownandTwiss(1954)introducedthemethodofintensityinterferometry,inwhichthefluctuatingintensitiesoftheradiosignals,ratherthanthefields,wouldberecordedwithsquarelawdetectorsandcorrelated.Asimplifieddescriptionofhowthisworksbeginswiththeinstantaneousintensityofthefieldinthetimedomain,Ier,tT?U*er,tTUer,tT, andtheinstantaneousvariationofintensityfromthemean,ΔIer,tT?Ier,tT-hIer,tTi: Ifonelooksatthecorrelationofintensitiesattwopointsinspaceandtime,onegetstheexpressionhΔIer1,tTΔIer2,t+τTi?hIer1,tTIer2,t+τTi-hIer1,tTihIer2,t+τTi:(26)Itistobenotedthat,inthisexpression,theaverageintensityisindependentoftime,i.e.hI(r,t)i?I(r),asinEq.(3).Thefirstintensitycorrelationfunc-tionontheright-handsideofthisequationisafourth-orderfieldcorrelationfunction.UndertheassumptionthatthelightsourcesatisfiesGaussianstatistics,whichisvalidfornaturalsources,itmaybewrittenas2hIr1,tIe2,t+τTi?hIe1,tTiIe2,tTi+je1,r2,τTj:(27)Onsubstitution,wereadilyfindthatthenormalizedintensitycorrelationgivenby212hΔIer1,tTΔIer2,t+τTi?jγer,r,τTj2: (28)12hIer1,tTihIer2,tTiThenormalizedintensitycorrelationissimplygivenbythesquaredabsolutevalueofthecomplexdegreeofcoherence.Becausethefirstzeroofthisdegreeofcoherencecanbeused,asintheMichelsonstellarinterferometer,todeterminethesizeofasource,intensitycorrelationscanalsobeusedsuchsourcemeasurements.Thefirstexperimentaltestofthemethodwasdonein1952,2beforethepublishedtheoreticalanalysisofHanburyBrownandBrown,Jennison,andGupta(1952)measuredthesizesofradiosourcesJodrellBank,inManchester.HanburyBrownandTwissnextturnedtolaboratoryexperimentsdeterminewhetherintensitycorrelationscanbemeasuredinopticalsignals(Brown&Twiss,1956),andtheirpositiveresultmetwithmuchresistance.Whereasradiowavedetectorsmaybethoughtofasclassicalwavedetectors,photodetectionisaninherentlyquantumprocess,andtherewasconcernthattheshotnoiseofphotondetectionwouldoverwhelmthedesiredfluctuations.Infact,earlyexperimentsbyandVarga(1954)andBrannenandFerguson(1956)foundnointensitycorrelationsatAdetailedanalysisoftheirexperimentsbyBrownandTwiss(1956),ever,determinedthattheirexperiments,asdesigned,wouldneedtorun1011yearsand1000years,respectively,tofindasignal.cWiththevalidityofthetechniqueestablished,BrownandTwiss(1956)performedaninitialtestatJodrellBankbymeasuringtheangulardiameterofthestarSiriusA.Themeasuredvaluewas0.0068000.000500theacceptedvalueis0.005936000.00001600Intheearly1960s,theUniversityofManchesterandUniversityofSydneycollaboratedtobuildastellarintensityinterferometerattheNarrabriObservatoryinNewSouth(Brown,Davis,&Allen,1967),formeasurementsofstellardiameters.Ofthemanyobservationsmadethere,weonlynotethemeasurementZetaPuppisin1969(Davis,Morton,Allen,&Brown,1970).Thestudyofintensitycorrelationshashadapplicationsbeyondastron-omy,notablyinthestudyofthestatisticsofquantizedfields.Forexample,Hennyetal.(1999)usedintensitycorrelationstostudythestatisticsofbeamofelectrons,notingthedifferencesbetweenthisfermionicandabosonicbeamofphotons.Quiterecently,Hongetal.(2017)usedHanburyBrown–TwissinterferometrytostudythepropertiesofsinglecWenotetheseresultsnottocriticizetheauthors,buttopointoutthenaturalperilinherentininves-tigatinganypoorlyunderstoodphenomenoninphysics.photonsinanoptomechanicalresonator.Thesearejustapairofexamples;ingeneral,intensitycorrelationshavealsoplayedafundamentalroleinunderstandingthenonclassicalpropertiesoflight.ItisworthnotingthattherehasbeenrecentinterestinextendingHanburyBrown–Twisstypemeasurementstoincludepolarizationeffects.See,forinstance,Liu,Wu,Pang,Kuebel,andVisser(2018)andKuebelandVisser(2019).GhostimagingGhostimagingisatechniqueforimageformationbymeansofintensitycorrelations,instrikingcontrastwithothermethodswhichimageswithintensity,phaseorpolarizationstate.ItmaybeconsideredmoreelaborateformoftheHanburyBrownandTwissinterferometricmethodfordeterminingstellardiameters.Thebasicprincipleofghostinginvolves(i)splittingtheilluminationintotwobranches:onenotinter-actingwiththeobjectbutbeingdetectedbyacamerawithhighspatialresolution,andtheotherpassingthroughtheobjectbutbeingimagedintoabucket(single-pixel)photodetectorand(ii)correlatingthetwooutputs.Termghostcapturesthepeculiarnatureoftheimageformationmechanisminwhichneitherdetector’sintensityoutputcarriestheinformationtheobjectbyitself.ThefoundationofghostwassetbyKlyshko1988b)andthefirstwasoutinSergienko,Klyshko,andShihandPittman,Shih,andThereliedonentangledpairsproducedbyparametricandpho-usedinforscanningoftheentireThus,ghostimagingwasasapurelyquantumuntilitwasbymeansofexistinginasourcebyBennink,andBoydFig.3shows(A)thefirstsetupofghostimagingwithclassiclightand(B)thepro-ducedghostimageoftheURoflabel(fromBenninketal.,Gatti,Brambilla,Bache,andLugiato(2004)developedthetheoryghostimagingwithincoherentclassicallightandcompareditvianumericalsimulationswithimagingbasedontheentangledphotonpairs.InCaiZhu(2005)(seealsoCaiandWang(2007)),theeffectofsourcepartialcoherenceontheghostimagequalityandvisibilitywasaddressed:A BFig.3Ghostimagingwithclassiclightsource.(A)Theexperimentalsetup,and(B)formedimage.FromBennink,R.S.,Bentley,S.J.,&Boyd,R.W.(2002).“Two-photon”coin-cidenceimagingwithaclassicalsource.PhysicalReviewLetters,89,113601.anincreaseofsourcecoherencetheimagequalitydecreases(butimageibilityincreases).GhostimagingwithtwistedpartiallycoherentlightdiscussedinCai,Lin,andKorotkova(2009)whereitwasshownthatanincreaseofthetwistfactor,theimagequalityreduces.InTong,Cai,Korotkova(2010)andShirai,Kellock,Se,dg)thetech-niquewasextendedtotheelectromagneticdomainandtheeffectsofpartialpolarizationonimagequalityandvisibilitywerediscussed.Itwasthatthetrendintheimagevisibilitydependsonthedefinitionofthetromagneticdegreeofcoherence.Shapiro(2008)introducedtheideaofcomputationalghostimagingusingaspatiallightmodulatorforcontrollablerandomizationoftheillumination’sintensity.Thisallowedforeliminationofthebeamsplitterandtheimagingdetector.Hencetheonlydetectorleftinthesystemisthesingle-elementdetectormeasuringthe

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論