下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省昆明市第十一中學2022年高三數(shù)學文聯(lián)考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.如果,那么下列不等式一定成立的是(
)A.
B.
C.
D.參考答案:A2.從6雙不同顏色的手套中任取4只,其中恰好有兩只顏色相同的取法有
(
)A.60
B.120
C.180
D.240參考答案:D3.一給定函數(shù)的圖象在下列圖中,并且對任意,由關(guān)系式得到的數(shù)列滿足,則該函數(shù)的圖象是
(A)
(B)
(C)
(D)
參考答案:答案:A4.甲,乙,丙;丁,戊五人排隊,若某兩人之間至多有一人,則稱這兩人有“心靈感應(yīng)”,則甲與乙有“心靈感應(yīng)”的概率是A.
B.
C.
D.參考答案:D略5.已知實數(shù){an}是等比數(shù)列,若a2a5a8=8,則a1a9+a1a5+a5a9()A.有最小值12 B.有最大值12 C.有最小值4 D.有最大值4參考答案:A【考點】等比數(shù)列的通項公式.【專題】函數(shù)思想;綜合法;等差數(shù)列與等比數(shù)列.【分析】由題意和等比數(shù)列的性質(zhì)可得a5=2,再由等比數(shù)列的性質(zhì)和基本不等式可得.【解答】解:∵{an}是等比數(shù)列且a2a5a8=8,∴a2a5a8=a53=8,∴a5=2,∴a1a9+a1a5+a5a9=a32+a52+a72=4+a32+a72≥4+2a3a7=4+2a52=12.故選:A.【點評】本題考查等比數(shù)列的通項公,涉及等比數(shù)列的性質(zhì)和基本不等式,屬基礎(chǔ)題.6.已知直線,,則它們的圖像可能為(
)
參考答案:D7.設(shè)直線與的方程分別為與,則“”是“”的
A.充分而不必要條件
B.必要而不充分條件C.充分必要條件
D.既不充分也不必要條件參考答案:B8.已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則它的前10項的和S10=() A.
138
B.
135
C.
95
D.
23參考答案:C略9.已知雙曲線的左頂點為,右焦點為,P為雙曲線右支上一點,則
最小值為A.
B.
C.2
D.3參考答案:A略10.已知直線,平面,且,給出下列命題:①若∥,則m⊥;
②若⊥,則m∥;③若m⊥,則∥;
④若m∥,則⊥其中正確命題的個數(shù)是 ()A.1 B.2 C.3 D.4參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.已知數(shù)列的通項公式為,其前項的和為,則當取最大值時,
.參考答案:512.2017年1月27日,哈爾濱地鐵3號線一期開通運營,甲、乙、丙、丁四位同學決定乘坐地鐵去城鄉(xiāng)路、哈西站和哈爾濱大街.每人只能去一個地方,哈西站一定要有人去,則不同的游覽方案為.參考答案:65【考點】D8:排列、組合的實際應(yīng)用.【分析】根據(jù)題意,先由分步計數(shù)原理計算可得四人選擇3個地方的全部情況數(shù)目,再計算哈西站沒人去的情況數(shù)目,分析可得哈西站一定要有人去的游覽方案數(shù)目,即可得答案.【解答】解:根據(jù)題意,甲、乙、丙、丁四位同學決定乘坐地鐵去城鄉(xiāng)路、哈西站和哈爾濱大街.每人只能去一個地方,則每人有3種選擇,則4人一共有3×3×3×3=81種情況,若哈西站沒人去,即四位同學選擇了城鄉(xiāng)路和哈爾濱大街.每人有2種選擇方法,則4人一共有2×2×2×2=16種情況,故哈西站一定要有人去有81﹣16=65種情況,即哈西站一定有人去的游覽方案有65種;故答案為:65.13.復數(shù)z1=a+2i,z2=-2+i,如果|z1|<|z2|,則實數(shù)a的取值范圍是_______.參考答案:(-1,1) 14.已知函數(shù)(且)的最小值為,則展開式的常數(shù)項是
(用數(shù)字作答)參考答案:略15.若(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),則的值為
.參考答案:﹣1【考點】二項式定理的應(yīng)用.【分析】由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,即可得出.【解答】解:由(1﹣2x)2017=a0+a1x+…a2017x2017(x∈R),令x=0,可得1=a0.令x=,可得0=1+++…+,∴++…+=﹣1,故答案為:﹣1.【點評】本題考查了二項式定理的應(yīng)用、方程的應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.16.過點(3,0)且斜率為的直線被橢圓所截線段的中點坐標為
.參考答案:17.已知,若,則
。參考答案:-2三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知等差數(shù)列{an}的前n項的和為,,.(1)求數(shù)列{an}的通項公式;(2)設(shè),記數(shù)列bn的前n項和Tn,求使得恒成立時m的最小正整數(shù).參考答案:(1)(2)1【分析】(1)先設(shè)設(shè)等差數(shù)列的公差為,由,列出方程組求出首項和公差即可;(2)由(1)先求出,再由裂項相消法求數(shù)列的前項和即可.【詳解】解:(1)設(shè)等差數(shù)列的公差為,因為,,所以
解得所以數(shù)列的通項公式為.(2)由(1)可知∴,∴,∴,∴的最小正整數(shù)為1【點睛】本題主要考查等差數(shù)列的通項公式,以及裂項相消法求數(shù)列前項和的問題,熟記公式即可,屬于基礎(chǔ)題型.19.必修4:三角函數(shù)已知函數(shù)的最小正周期為π.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)若,求x取值的集合.參考答案:(Ⅰ)
……………3分因為周期為,所以,故由,得函數(shù)的單調(diào)遞減區(qū)間為
……6分(Ⅱ),即,由正弦函數(shù)得性質(zhì)得,
………8分解得所以則取值的集合為
………………10分
20.(2016?臨汾二模)如圖,在△ABC中,∠BAC=90°,點D為斜邊BC上一點,且AC=CD=2.(1)若CD=2BD,求AD的值;(2)若AD=BD,求角B的正弦值.參考答案:【考點】三角形中的幾何計算.【分析】(1)依題意得DB=1,BC=CD+DB=3.在Rt△ABC中,求出cosC,在△ADC中,由余弦定理得:,即可.(2)在△ADC中,由余弦定理得:AD2=8﹣8cosC.在Rt△ABC中,,可得BD.由8﹣8cosC=2?()2.解得cosC即可.【解答】解:(1)∵CD=2DB=2,∴DB=1,BC=CD+DB=3.在Rt△ABC中,cosC=,在△ADC中,由余弦定理得:,∴AD=.(2)在△ADC中,由余弦定理得:AD2=AC2+CD2﹣2AC?CDcosC=8﹣8cosC.在Rt△ABC中,,∴BD=BC﹣CD=.∵AD2=2DB2,∴8﹣8cosC=2?()2.解得cosC=,∵,∴sinB=cosC=.【點評】本題考查了正弦、余弦定理在解三角形中的應(yīng)用,同時考查了方程的思想及運算能力,屬于中檔題.21.如圖,四棱錐中,側(cè)面是邊長為的正三角形,且與底面垂直,底面是面積為的菱形,為銳角,為的中點.(Ⅰ)求證:;(Ⅱ)求與平面所成的角的大小.
參考答案:解:(Ⅰ)過作于連接側(cè)面。故是邊長為2的等邊三角形。又點,又是在底面上的射影,(Ⅱ)設(shè)與平面所成的角為,取的中點為連接又為的中點,,又,且在平面上,又為的中點,又線段的長就是到平面的距離,在等腰直角三角形中,,,,即到平面的距離是,,故與平面所成的角為.22.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.求證:(1)A1B1∥平面DEC1;(2)BE⊥C1E.參考答案:(1)見解析;(2)見解析.【分析】(1)由題意結(jié)合幾何體的空間結(jié)構(gòu)特征和線面平行的判定定理即可證得題中的結(jié)論;(2)由題意首先證得線面垂直,然后結(jié)合線面垂直證明線線垂直即可.【詳解】(1)因為D,E分別為BC,AC的中點,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因為ED?平面DEC1,A1B1平面DEC1,所以A1B1∥平面DEC1.(2)因為AB=BC,E為AC的中點,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保公益宣傳品采購與服務(wù)合同3篇
- 2024年版:建筑工程專業(yè)分包合同模板
- 簡易警報器課程設(shè)計
- 工程經(jīng)濟學課程設(shè)計
- 航天能源課程設(shè)計思路
- 電工實訓教學課程設(shè)計
- 《黑衣“超人”》課件
- 機械沖床課程設(shè)計題目
- 色彩搭配系統(tǒng)課程設(shè)計
- 米利根案件課程設(shè)計
- 《皮膚病中成藥導引》課件
- 2024-2030年中國除顫儀行業(yè)市場分析報告
- 2023-2024學年廣東省廣州市越秀區(qū)九年級(上)期末物理試卷(含答案)
- 廣東省廣州市天河區(qū)2023-2024學年八年級上學期期末考試物理試題(含答案)
- 2024年高一上學期期末數(shù)學考點《壓軸題》含答案解析
- 成都中醫(yī)藥大學博士申請
- 太空軍事法律問題-洞察分析
- 2024年行政執(zhí)法人員資格考試必考知識題庫及答案(共250題)
- 招標代理崗位職責規(guī)章制度
- 家校攜手育桃李 齊心合力創(chuàng)輝煌 課件高二上學期期末家長會
- 二零二四年風力發(fā)電項目EPC總承包合同
評論
0/150
提交評論