2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年黑龍江省牡丹江市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

2.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

3.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有

A.f(x)對(duì)于g(x)是高階的無(wú)窮小量

B.f(x)對(duì)于g(x)是低階的無(wú)窮小量

C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量

D.f(x)與g(x)為等價(jià)無(wú)窮小量

4.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

5.

6.設(shè)y=2x,則dy=A.A.x2x-1dx

B.2xdx

C.(2x/ln2)dx

D.2xln2dx

7.

8.A.

B.

C.

D.

9.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

10.微分方程y'=x的通解為A.A.2x2+C

B.x2+C

C.(1/2)x2+C

D.2x+C

11.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要

12.A.A.5B.3C.-3D.-5

13.

A.0B.2C.4D.8

14.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

15.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)

B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

16.

17.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

18.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

19.

20.

二、填空題(20題)21.22.23.24.廣義積分.

25.

26.設(shè)y=sinx2,則dy=______.

27.

28.

29.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_(kāi)_________。

30.設(shè)z=ln(x2+y),則全微分dz=__________。

31.

32.交換二重積分次序=______.33.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為_(kāi)_________.34.設(shè)f(x)在x=1處連續(xù),=2,則=________。

35.

36.設(shè)z=x3y2,則37.設(shè)f(x)=x(x-1),則f'(1)=__________。38.39.

40.

三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求曲線在點(diǎn)(1,3)處的切線方程.

43.

44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.

46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).47.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.50.51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).56.

57.

58.求微分方程的通解.59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.60.證明:四、解答題(10題)61.

62.

63.

64.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.

65.

66.設(shè)z=z(x,y)由x2+y3+2z=1確定,求67.

確定a,b使得f(x)在x=0可導(dǎo)。68.

69.

70.求fe-2xdx。五、高等數(shù)學(xué)(0題)71.某工廠每月生產(chǎn)某種商品的個(gè)數(shù)x與需要的總費(fèi)用函數(shù)關(guān)系為10+2x+

(單位:萬(wàn)元)。若將這些商品以每個(gè)9萬(wàn)元售出,問(wèn)每月生產(chǎn)多少個(gè)產(chǎn)品時(shí)利潤(rùn)最大?最大利潤(rùn)是多少?

六、解答題(0題)72.

參考答案

1.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

2.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

3.C

4.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

5.A

6.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。

7.A

8.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

9.C

10.C

11.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。

12.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此

x=-3為f(x)的間斷點(diǎn),故選C。

13.A解析:

14.A

15.B

16.D

17.D

18.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

19.C

20.D21.2x+3y.

本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.

22.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).

23.24.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

25.26.2xcosx2dx本題考查的知識(shí)點(diǎn)為一元函數(shù)的微分.

由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.

27.28.

29.

30.

31.ee解析:

32.本題考查的知識(shí)點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

33.[-1,134.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

35.y+3x2+x36.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

37.38.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

39.

40.-exsiny

41.

42.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.

44.函數(shù)的定義域?yàn)?/p>

注意

45.由一階線性微分方程通解公式有

46.

列表:

說(shuō)明

47.

48.由等價(jià)無(wú)窮小量的定義可知49.由二重積分物理意義知

50.

51.

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

55.

56.

57.

58.

59.

60.

61.解:

62.

63.

64.

65.

66.本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).

若z=z(x,y)由方程F(x,y,z)=0確定,求z對(duì)x,y的偏導(dǎo)數(shù)通常有兩種方法:

一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對(duì)x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三者同等對(duì)待,各看做是獨(dú)立變?cè)?/p>

二是將F(x,y,z)=0兩端關(guān)于x求偏導(dǎo)數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導(dǎo)數(shù),將z=z(x,y)看作中間變量,可以解出

67.

①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②

∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論