版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)是奇函數(shù)的導函數(shù),當時,,則使得成立的的取值范圍是()A. B.C. D.2.已知函數(shù),若,則下列不等關系正確的是()A. B.C. D.3.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.4.某個命題與自然數(shù)有關,且已證得“假設時該命題成立,則時該命題也成立”.現(xiàn)已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立5.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.506.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知是虛數(shù)單位,若,則()A. B.2 C. D.38.已知實數(shù),,函數(shù)在上單調遞增,則實數(shù)的取值范圍是()A. B. C. D.9.若實數(shù)、滿足,則的最小值是()A. B. C. D.10.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度11.已知正方體的棱長為2,點在線段上,且,平面經過點,則正方體被平面截得的截面面積為()A. B. C. D.12.已知全集為,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足約束條件則的最大值為________.14.雙曲線的焦點坐標是_______________,漸近線方程是_______________.15.若函數(shù),則的值為______.16.已知復數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.19.(12分)如圖,四棱錐中,側面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.20.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.21.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據表格數(shù)據,判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.22.(10分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構造函數(shù),令,則,由可得,則是區(qū)間上的單調遞減函數(shù),且,當x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調性是函數(shù)的重要性質之一,它的應用貫穿于整個高中數(shù)學的教學之中.某些數(shù)學問題從表面上看似乎與函數(shù)的單調性無關,但如果我們能挖掘其內在聯(lián)系,抓住其本質,那么運用函數(shù)的單調性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據題目的特點,構造一個適當?shù)暮瘮?shù),利用它的單調性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.2、B【解析】
利用函數(shù)的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調性、不等式性質的運用,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.3、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.4、C【解析】
寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.5、C【解析】
先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點睛】本題考查二項展開式中某一項系數(shù)的求解,關鍵是對通項公式的熟練使用,屬基礎題.6、D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.7、A【解析】
直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.8、D【解析】
根據題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質分析可得①,當,由導數(shù)與函數(shù)單調性的關系可得,在上恒成立,變形可得②,再結合函數(shù)的單調性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據題意,函數(shù)在上單調遞增,
當,若為增函數(shù),則①,
當,若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點睛】本題考查函數(shù)單調性的性質以及應用,注意分段函數(shù)單調性的性質.9、D【解析】
根據約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是基礎題.10、A【解析】
根據函數(shù)圖像平移原則,即可容易求得結果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎題.11、B【解析】
先根據平面的基本性質確定平面,然后利用面面平行的性質定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質,面面平行的性質定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.12、D【解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
作出約束條件表示的可行域,轉化目標函數(shù)為,當目標函數(shù)經過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內部,轉化目標函數(shù)為當目標函數(shù)經過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規(guī)劃問題,考查了學生轉化劃歸,數(shù)形結合,數(shù)學運算能力,屬于基礎題.14、【解析】
通過雙曲線的標準方程,求解,,即可得到所求的結果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【點睛】本題主要考查了雙曲線的簡單性質的應用,考查了運算能力,屬于容易題.15、【解析】
根據題意,由函數(shù)的解析式求出的值,進而計算可得答案.【詳解】根據題意,函數(shù),則,則;故答案為:.【點睛】本題考查分段函數(shù)的性質、對數(shù)運算法則的應用,考查函數(shù)與方程思想、轉化與化歸思想,考查運算求解能力.16、11【解析】
根據復數(shù)運算法則計算復數(shù)z,根據復數(shù)的概念和模長公式計算得解.【詳解】復數(shù)z,∵復數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復數(shù)的概念和模長計算,根據復數(shù)是純虛數(shù)建立方程求解,計算模長,關鍵在于熟練掌握復數(shù)的運算法則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據,利用二倍角公式得到,再由輔助角公式得到,然后根據正弦函數(shù)的性質求解.(Ⅱ)根據(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數(shù)根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數(shù)根.當時,易知當,方程在上有且只有一個實數(shù)根.此時方程在上也有一個實數(shù)根.滿足條件.綜上,實數(shù)的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學生的運算能力,是一道中檔題.19、(1)見解析(2)【解析】
(1)根據平面,利用線面垂直的定義可得,再由,根據線面垂直的判定定理即可證出.(2)取的中點,連接,以為坐標原點,分別為正半軸建立空間直角坐標系求出平面的一個法向量,利用空間向量法即可求解.【詳解】因為平面平面,所以由為等腰直角三角形,所以又,故平面.取的中點,連接,因為,所以因為平面,所以平面所以平面如圖,以為坐標原點,分別為正半軸建立空間直角坐標系則,又,所以且于是設平面的法向量為,則令得平面的一個法向量設直線與平面所成的角為,則【點睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據絕對值不等式的性質可得,不等式對任意實數(shù)恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當時,即,①當時,得,所以;②當時,得,即,所以;③當時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.21、(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】
(1)由頻率和為可知,根據求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據數(shù)學期望的計算公式可求得期望;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年飾品商鋪租賃與品牌合作與市場拓展合同3篇
- 2025版互聯(lián)網數(shù)據中心相關方環(huán)境管理協(xié)議3篇
- 二零二五版鋼筋焊接工藝用工合同模板范文2篇
- 二零二五版模具維修改型與產業(yè)融合合同4篇
- 2025年道路工程質量檢測與驗收合同3篇
- 2025年度個人股份代持及轉讓法律文件3篇
- 2025年度采礦權出讓合同范本:礦產資源勘查開發(fā)技術規(guī)范3篇
- 2025年度冰箱智能互聯(lián)技術合作協(xié)議3篇
- 二零二五年度新能源用地抵押借款合同3篇
- 二零二五版定制家具銷售與售后服務協(xié)議7篇
- 2024年社區(qū)警務規(guī)范考試題庫
- 2024年食用牛脂項目可行性研究報告
- 消防安全隱患等級
- 溫室氣體(二氧化碳和甲烷)走航監(jiān)測技術規(guī)范
- 部編版一年級語文下冊第一單元大單元教學設計
- 《保單檢視專題》課件
- 北京地鐵13號線
- 2023山東春季高考數(shù)學真題(含答案)
- 職業(yè)衛(wèi)生法律法規(guī)和標準培訓課件
- 高二下學期英語閱讀提升練習(二)
- 民事訴訟證據清單模板
評論
0/150
提交評論