版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
二重積分的概念與性習(xí)題 xy2dxy3dDxy xy1Dxy2xy3,所以xy2dxy3d DDxy2d與xy3dDDDx22y122所圍成Dxy2xy3,所以xy2dxy3d lnxydlnxy2dD為三角形閉區(qū)域,三頂點(diǎn)分別為10,1,1,20
DDxy3x50y1D
(1)IDxyxydDxy0x10yD0xyxy2,所以0I(2)IDsin2xsin2ydDxy0x0yD0sin2xsin2y1,所以0I2(3)IDxy1dDxy0x10y解:在D上,1xy14,所以2ID(4)Ix24y29dDxyx2y2DD上,13x24y2925,所以52I
x2y2d,其中DxDx2y2d1D
x1,yD3x2ydDxy22D3x2yd2Dx33x2yy3dDxy0x10yD
3x2yDxcosxyd,其中D為頂點(diǎn)分別為00,0和,的三角解:DxcosxyDyexydxdyDx2y2xy1D
yexydxdy
1222
2yexy
xy2dxdyDxpy22pxp02
xy2dxdy
p
2p2
exydxdyDx0x1y0y1D exydxdy1dx1D
xsinxydxdyDx0xy0y2
xsinxydxdy
dx2xsinxydy
xsinxcosxdx Dsinxycosx2y2dxdyDx2y2DDxysinxycosx2y2dxdyDDx3sinx2y2dxdyDx2y22DDyx的奇函數(shù),所以x3sinx2y2dxdyDDD
1x2dxdyDx2y21212
dxdy1
dy121x21 1
dx3212DxydxdyDxy12xydxdy81dx1xxdy81xx2dx4 7D x2y2dxdyDx2y21x2y22x7D
解 x2y2dxdy
3
r3dr
203
r3dr DD
sinx2y2dxdyD為2x2y24sinx2y2dxdy2 2rsinr2dr
21cos21cos42
0 cos2cos42R2r2D R2x2y2dxdyDx2y2R2r2D
2
R2R2x2
dxdy
d
rdr
d D解:D
R2x2y2dxdyDx2y2RxR R2x2y2dxdy22d
R R2r2R2r222 1sin3d 30 Dx2xydxdyDxy1xy2yxy2xDxy解:做變換
x
u1
,x,y
111111
y
1
u,
1
1
11
xydxdy1 3du
41v3dv962313Dx3y3dxdyDx22yx23yxy2x2y22313Dx2
2
1
12解:做變換
xu3v3,則
x,y
u3
u3v3
1,所以
1
u,
2
21
yu3v 1u2v
3
7u
3v
3
u3v
ydxdy2
dv2
72du1442DxydDy
x,yx2 12 解:xyddx2xydy xxdx
03 Dxy2dDx2y24yD44
2
y4 Dxyd2
xydx22y2dy15 DexydDxy:xD
y1D10exyd0dxx1exydy1dx1xD100e2x1e1dx1ee2x1dxe1 Dx2y2xdDy2yxy2xD解 x2y2xd
2dyyx2y2xdx
219y33y2dy13
0 (5)D1xsinyd,其中D為頂點(diǎn)分別為00,10,12和0,1的梯形閉區(qū)域
1xsinyd1dxx11xsinydy11x1xcos1xdx 32sin2sin1cos2 2D(6)x2y2d,其中Dxy0ysinx0xD解 x2y2d
dxsinxx2y2dy
x2sinx1sin3xdx240
0 D(7)y23x6y9d,其中Dxyx2y2R2D2
x2
Rr D
3x6y9dD
9d
d0
92R49R2
20
d
9R 如果二重積分Dfx,ydxdy的被積函數(shù)fx,y是兩個(gè)函數(shù)f1x及f2y的乘積fxyf1xf2y,積分區(qū)Dx,yaxbcyd,證明此fx
ydxdybfxdx
dfydy.D
f1xf2ydxdybdxdf1xf2ydybdf2ydy b fxdxdfydy.b IDfx,ydyxy24xy x4解:I fx,ydyy x4
fx, 4xx2y2r2y0解I
r fx,ydy
r2 fx,y r2r2
r2yxx2y21x0x I1x
fx,ydy環(huán)形閉區(qū)域xy1x2y24;44 2 f444441 fx,41 1 fx, 4以O(shè)00,A20,B2,1,C0,1為頂點(diǎn)的矩形 I0dx0fxydy
f以O(shè)00,A10,B1,1為頂點(diǎn)的三角形 I0dx0fxydy0dyyf以O(shè)00A2a0B3aa,Caa為頂點(diǎn)的平行四邊形; I0
fx,ydy 0dy
fx,y I1
fx,yyx2xy2I
fx,y yx2,y4x2I
4 fx, xy2y2x2yx0 2 I dxxfx,ydy dxxfx,y 121220dyyfx,ydx1 fx,yy fxyDDyxyaxbba所圍成的閉區(qū)域。 adxafx,ydyadyyfx,y adxafxydyDfxyda
fx,yy(1)0
fx, 0dy0fxydx0dxxfx
2 fx,y 2解 fx,y 2
dx
fx,y
21(3)0 fx1解:0 fx,y22
fx,y(4)122x
fx,y解1dx2
fx,ydy0dy2
fx,y 1e1e
fx,ye解:1 fx,ydye
0 fx,
0dxsinxfx,y2 sin arcsin0dxsinxfxydy1dy2arcsinyfxydx0dyarcsin2
fx,y04(7)04
14dy4
fx,y
fx,
2 0dy 2
fx,ydx1 3 3
fx,y解:0 fx,ydx1
fx,y0dx
fx,y (10)0
fx,ydya 0dx0fxydy0
fx,y1(11)0 fx,y1 3y解:0 fx,ydy0 fx,y3yyay(12)0dyyfx,yy y1x解:0dyyfx,y1x
fx,11x
fx,y y 0dy0 fxdx0a證明: y y證明: y y D
emax
其中Dx0yayx圍成的
0dy0 fxd應(yīng)用二重積分證明:由射線,與曲線rrD2 r 證明:Sdd rdr 求心臟線ra1cos12
S20a1cos
d 2
x2y2
fydxdyxx解:x2y2
fydxdyxx
22
frsinrdrrcosrcos
cos2ftan22222
DydxdyD0xyxa2x2y2b2ba0Darctan b
arctanb3 Dydxdyarctandarsindrarctan sin b3a3 1 12 DarctanxdxdyDxyRyDarctanxdxdy
a2x2y2
3/
,D:0xa,0y
a
3/224d
3/2dr Da2x2y2
a2r2
x2y2x
xy
ux1
xu1
vy
yv x,y 0
xydxdy uv
,由對(duì)稱(chēng)性,u,v
x2y2x u2v22u2v22
uvdudv0,所
x2y2x
xydxdy
u2v22
dudv2
x4y4
x2y2 x2y2dxdy
2
4cos4sin4r3dr
x4y4
0cos4sin41 1tan d
1
dx
2 d(x ) 201tan4
01
0(x1)2 xxyuyvxDfxydxdy(Dx0y0xy1的公共部分)化為變量uv的累次積分。xy解:做變換
x
1
,x,y
111111
y
1
u,
1
1fx,ydxdy
1duf
,uv
1
1v 1y2pxy2qxx2ayx2by0pq0abx2
2
1
12
xu3v3
x,y,
u3
u3v3
1
1
u,
2
21 x
yu3v
u3v
u3v32313 baq2313所以Sddu1dv p 設(shè)平面薄片所占的閉區(qū)域D由直線xy2yxx軸所圍成,其面密度xyx2y2m
x2y2d
1dy2yx2y2dx
184y4y28y3dy4
x0,y0x1,y1z02x3yz解:V
62x3yd1
62x3ydy
192xdx711
0 x0,y0xy1z0x2y26z
1
4x3 VD6xyd0dx06xydy035x2x3dx6 zx22y2z62x2y2解:聯(lián)立z62x2
得投影區(qū)域Dxy0x2y2所以V
62x2y2x22y2d2d
263r2rdr 畫(huà)出積分區(qū)域,把積分Dfxydxdy Da(1)x,yx2y2a2aaDfxydxdy
d
frcos,rsin(2)x,yx2y2
fx,ydxdy
2 2
frcos,rsinb(3)xya2x2y2b2其中0abDfxydxdy
d
frcos,rsin(4)x,y0y1x,0x
fx,ydxdy2dcos
frcos,rsin(5)x,yx2y1,1x
fx,ydxdy4dcos2
frcos,rsin44
frcos,rsinrdr
34
cos2
frcos,rsin(6)x,yx2y2axa0,
fx,ydxdy
22
frcos,rsin(7)x,yx2y2byb0, Dfxydxdy0d
frcos,rsin(8)x2y24xx2y28xyxy2x Dfxydxdy4
frcos,rsin(9)x2y2axx2y2aya0所圍區(qū)域的公共部分。fx,ydxdy4d
a
frcos,rsinD24
frcos,rsin (1)0dx0fx,y dxfx,ydy4d
frcos,rsin24
frcos,rsin20(2)20
3xf
x2y2x解:2 3xfx
x2y2dy
3
2
fr
4
01
fx,y
fx,ydy2d frcos,rsinrdr.
cos(4)0
fx,y11
dx0fx,ydy
40
1cos2
frcos,rsin(1)0 xy
x2y2dy2d
2a
r3dr24a4cos4d
.2ax 2ax (2)0
x2y2 a
x2y2dy4dcosr2dr 32 2
3cos4a34
4
3ad a
a1dsin a1
dx
a2a
30cos
30(1
3
(1x 12
1
1x2 22
2 2
2
1201x 1x
1
1x 2
2 2
2
1201x 1x
1
1x a3ln32222
0x1 x1
x2
2
x2y22dy
40
cos2dr0
0cos2
d
2a(4)0aa
a2y2x2y2a2a2
解: x2y2dx2dr3dr d 0 fxy在閉區(qū)域Dxyx2y2yx0上連續(xù)fx,yfxy。Dfx,ydxdy
81x21x21x2D
fx,y
fx,ydxdy sin
1r2d1r
fx,ydxdyrdr
fx,y
所以
fx,ydxdy1.,fx,y
28
11x2Dex2y2dDx2y24Dx2
2
2e41 2 d0d0erdr0 de2 D(2)ln1x2y2dDx2y21D
1 ln 1ln1x2y2d2drln1r2dr2ln2
d
0
2
4(3)
arctanydDx2y24x2y21y0yxx
yd4d
rdr4
. 02 x2xDy2dDx2yxxy1 x y解: 2d1yx1x2
y2dy1
xdx
dDx1x2
1
1x2
11
2d2d
rdr 2D1x 01 2Dx2y2dDyxyxayay3aa0所圍成的閉D
3a
a3 Dxydadyyaxydxa2ayay3dy14a D x2y2d其中D為圓環(huán)形閉區(qū)域xya2x2y2b2D 解: x2y2d dr2dr b3a3 D2上一段弧0與直線 2 xyx2y2m
d2d
r3dr244d R2r2y0ykxk0zR2r2
R2x2R2x2
d d
rdr 3xOyx2y2axzx2y2
a
a4cos4
解:V
x2y2d
2
r3dr
d D(1)xy2sin2xydxdy,D為平行四邊形閉區(qū)域,它的四個(gè)頂點(diǎn)是D0,2,,2和0,1212xuv1212
xyxy
,則y
2u2
x,yu,
2 2
v2sin2
33sin2
xydxdy
dv
du Dx2y2dxdyDxy1xy2yxy4x所圍成Dxu,vxu,v
x,
1u2v122112213解:做變換y
,則y
u,
.,所以u(píng) uv2uv2 4 2
7lnDxydxdy1du12vdv1
ln2du 3
exydxdyDxyxy1xy
xu
x,y 解:做變換
y
,則y
u,v
,所以 u
exydxdy
eudv
y2
(4)Da2b2dxdy,其中Dx,y b2 xarcos解:做變換ybr
x,y,則r,
ab
arbr
,所以x2y2
b2dxdy0 Dxy4xy8xy35xy315
1 xy
xu2v2,x,
u2v 解:做變換
,則
xy3
y
12
u
1
3 2v2 dxdy8du151dv2ln 5Dyx3y4x3xy3x4y3
311
x
x,
u8v33解:做變換
u1
, u,
193 344
y
8v
u8v8所以
dxdy
1
434
dv18Dxy1x0y0cosxydxdy1
xy
xuv
xyxy
,則y
1211212u2
x,yu,
21.,所以 2xy
cosv dxdy
du dvusin1du
xy
11(1)
fxydxdy
fudu其中閉區(qū)域Dx,xuv
xy121211212
xyxy
,則y
2u2
x,yu,
12 .,所以1 2fxydxdy1du1fudv
fu1 1
faxbycdxdy
f
cdu, 1a2Dxyx2y21a21a2證明:做變換
a2b2 ,則a2b2a2b2 a2xaaaa2 a2
aubva2a2
x,yu,
y a2a2
a2faxbycdxdy
f
a2a2
cdv2
f
1a21a2習(xí)題Ifxyzdxdydz為三次積分,其中積分區(qū)域xyzxy10z0 Ifxyzdxdydz0
fx,y,zzx2y2z1I
fx,y,zdxdydz1 fx,y,z1 1
x2zx22y2z2x2I
fx,y,zdxdydz
fx,y,
x22 由曲面czxyc0a2
Ifxyzdxdydz
dy
fx,y,z
(1)z2dxdydz為兩個(gè)球:x2y2z2R2x2y2z22RzR0的x2y2z2R2解:由x2y2z22Rzz
R2
z2dxdydz
z2dxdy2
z2dxdyR
R R
2 2 2 2 2 2 2Rz dzR R dz02zlnx2y2z2
dxdydz,其中x2y2z21 xyz關(guān)于xOyzzlnx2y2z2
x2y2z2
dxdydzy2z2dxdydz,其中xOyy22xx軸旋轉(zhuǎn)而成的曲面x5所圍成的閉區(qū)域。
y2z2
。易得在yOzD0yzy2z210,所
y2
dxdydz
225y5y
2
y2z2
10
r2
2D5 yzdydz0d 52rdr321 11解:1
xyz
dxdydz,其中x0y0z0xyz111
dxdydz
0
1x0
xyz121 1
1dy
1ln21xln1xdx3ln
xy 2 (5)xydxdydz,其中zxyz0xy1
1x21
xydxdydz
xydz
x2y2dy
dx
xy2z3dxdydz,其中zxyyxx1z02
2
xx5
1 xyzdxdydz0dx0
xyzdz0
dy028dx364(7)xyzdxdydz,其中x2y2z21x0y0z0
xyzdxdydz2d2d
5sin3cossincosd1
xyzsinxyzdxdydz,其中x0,y0z0xyz2
x
xyzsinxyzdxdydz2dx
dy
2 2dx xyxysinxydy2
xxsinx
(9)lx2my2nz2dxdydz,其中x2y2z2a2所圍成的閉區(qū)域(lm為常數(shù)
lx2my2nz2dxdydz
lmnx2y2z2 lm
d0d0
sind
lmn.(10)
x2y2dxdydz,:x2y2z2,0z h
x2x2
dxdydz
d0drrrdz6(11)xydxdydz,:xy2z,z
2
ydxdydzddrr2rdz3 2
x2y2dxdydz,:x2y2z2
x2y2dxdydz
2x2y2z2 22dda4sind8a53
dxdydz,x2y2a2z0zhh0所圍成。x2x2y2
2 2
3
dxdydz
d
dz
ah2
a. x2y2
r2
3 (14)zdxdydz,:x2y2z22,x2y2x2y2z2解:由x2y2
z1 zdxdydz
dzDzdxdy0dzDzdxdy
1z2dz
22z2zdz7 (15)z2dxdydz,:x2y2z2a2,x2y2axaz2dxdydz
2
a
z2rdz
2
acos
ra2r22
acos
3
a2aa2
3334a5 822d
ra2r22dr22 1sin5d
0
15(16)
x2y2zdxdydz其中由2zx2y2z22
2
r4
xyzdxdydz ddrr2zrcossindz d28
cos
0 2128cos2sin2d32 R2x2x2y2z2R2x2
z
x2x2
x2y2z2dxdydz
d4d
4sind
2
2. z3dxdydz,:x2y2z2R2,x0,y0,z
z3dxdydz2d2d
5cos3sind
.
x2y2z2dxdydz其中x2y2z2z
x2y2z2dxdydz
d2d
3sind cos4sin d2 d xydxdydz,:axyzb,z
x2y2dxdydz
d2d
4sin3d
b5a5 x2y2 dxdydz其中xyz2x2y2
dxdydz
d2d
2a
sind1 x2y2 1 d22a2cos2sind
.
dxdydz,:a2x2y2z2b2bax2y2z21
b
1
2dxdydz
d0d
2d4 xyz
b(23)
xyzdxdydz,:x2y2z2
x2x2
xyzdxdydz
zdxdydz
d4
2a
3cossind d44a4cos5sind
. (24)
1x2y2z2dxdydz,:x2y2z2 1x21x2y21
dxdydz
d0d
sind (25)
dxdydz, xasincos解:做變換ybsinsin1z1
abc
1a2b2c2dxdydz
d0d
sin 4
xyzdxdydz,:xa2yb2zc2R2ux
uvwabc解:做變換vybwz
abcdudvdw
3
abc.設(shè)函數(shù)fx連續(xù)
fx2y2z2dvFt ,
fx2y2d fx2y2dGt ,tt
fx2dx其中txyzx2y2z2t2Dtxyx2y2t討論Ft在區(qū)間0內(nèi)的單調(diào)性證明:當(dāng)t0Ft2Gt(1)
fx2y2z2dv
2 tf22sindFt t 0 00
fx2y2d
0
tfr202tf22d0 0tfr20F't
2ft2
tfr2rdr2ft200tfr2rdr00
tf22d
2ft2ttfr2trrdr0tfr2rdr0 ,所以Ft在區(qū)間0內(nèi)單調(diào)上升 fx2y2
tfr2
tfr2(2)Gt
Dt t
tfx2
2fx2
fx2 .令Httfr2r2drtfr2drtfr2rdr2,則H0 .令
。當(dāng)t0時(shí), H'tft2t2tfr2drft2tfr2r2dr2ft2ttfr
,所以0ft2ttr0
fr2drtfr2r2drtfr2drtfr2rdr2此等價(jià)于Ft2Gt 設(shè)有一物體,占有空間閉區(qū)域xyz0x10y10z1,在點(diǎn)xyzxyzxyzmxyz如果三重積分fxy
的被積函數(shù)fxyz
是三個(gè)函數(shù)f1x,f2y,f3z
fx,y,zf1xf2yf3z
x,y,zaxbcyd,l bfx,y,zdxdydzb bdxdf1xf2 daf1xdxcf2y
1xyz
,其中x0,y0z0xyz1
3 0dx
21x計(jì)算xzdxdydz,其中z0zyy1yx2所圍成的閉yOzx是奇函數(shù),所以xzdxdydz
zdxdydz其中zx2x2
zhR0h0 0 解 z
x2y2z2dv其中x2y2z21
x2y2z2dv2dd14sind4 (2)zdv其中閉區(qū)域由不等式x2y2za2a2x2y2z2所確定
zdv
d4d
2a
3cossind
d44a4cos5sind
7. (1)
xydv其中x2y21z1z0x0y0
xydv2d
r3cossindz 2x2y2dv,其中為由曲面4z225x2y2z52x2y2dv
0
0
5r3dz8求下列區(qū)域V(1)V:x2y2a2,z0,zmxm
解:V
dxdydz
2
rdz
2
mr2cosdr 3
(2)V:a2b2c22,b2c2aax2y2z2 解:由
xay2z2
x2VVdxdydz dxDdydz0
bc2
2x427
a 6 (3)Vx2y2a2y2z2a2z2x2a2所圍成(9.33VVdxdydz
1sin34 4 cos(1)z6x2y2zx2x2
x2y2解:由
z26Vdxdydz0(2)x2y2z22aza0x2y2z2(z軸的部分x2y2z2解:由x2y2
zaVdxdydz0x2x2解:由
zx2y2x2y2z11zVdxdydz0dzDz55x2解:由
x2y24z5x2y2z1
xdydz
ay2a2az,x2y2 2
,z0Vdxdydz02a3a3sin20 y2a2az,x2y2ax,z0a r2sin2 V dxdydz
2
a
rdz
2
acosrarsin
a3cos2 a3sin2cos4
d
2 x2y2az4a2x2y2z24az解:由x2y2z2
za
zVdxdydzz
dzDdxdy
4az
azdz 232a39a337a3.所以上下之比為27 求球體ra位于錐面3
和23解:V
dxdydz
d3d
2sind
3.3 3x2y2z22zx2y2x2y2z212解:由zx212
z1V
dxdydz
dxdy0zdz
22z2dz8276zR的球體,在其上任意一點(diǎn)的密度的大小與這點(diǎn)到球心的距離成正6z 解mdvkx2y2z2dxdydzddkr3sindrk fxy
為由曲面zx2y2yx2y1z0 x2解 fx,y,zdxdydz fx,y,z9.4
習(xí)題x2y2z2a2x2y2ax內(nèi)部的那部分面積。11 22ax ax 1
a
r dxdy4a2d
a2x2
a2r4a2d
a
dr24a a2r x2x2y2z22x2x2x2y2z2x2
所割a
x2y2
得za.所以球面x2y2z22az被錐面z 所恰為半球面,面積為2旋轉(zhuǎn)拋物面2zx2y2x2y21解S
1x2y2dxdy2d
1r2rdr2223曲面azxyx2y2a231a1aay x
3S3
dxdy
d
rdr
22(4)x2y2R2x2z2R2y2z2R2所圍成的立體的表面;S
112R2x2
R2R2r2cos2
dxdy
4R R
224R24 d24222
2R2.0cos cos(5)zarctanyx2y21xS
1 1x2 1y 1y22 x2 x2
11rdr
2ln
22 2x2求錐面z 被柱面z22xx2解:由
x2y2
解得x
2y2
,所以在xOy面上的投影為1xyx 1xyx x S
dxdy
22
222cos2d 2x2y2R2x2z2R2S
dxdy
R2R
dr12R2x2R12R2x2R2r2cos2 S
dxdy 11ab c c a2b2a2c2Dy
2pxxx0y02222 23205x 0 23205
03x0
x00 0
x2x
x0
22x0020
1
32y
02322320x0D為半橢圓形閉區(qū)域x,y
21,y a解:x0;y a
a Dacosbcos0abd2d2 x
Dyx2yx所圍成,它在點(diǎn)xy處的面x,yx2y,求該薄片的質(zhì)心。 xD
x2
0
xx2 1x1設(shè)有一等腰直角三角形薄片,腰長(zhǎng)為a,各點(diǎn)處的面密度等于該點(diǎn)到直角頂點(diǎn)的距離的x
xx2y2
x2y2(1)z2x2y2,zx0y0z
a2(2)z A2x2y2,za2x0;y
d2d
3sincosdz
32A3a33A4a4 3A
AaAaa32A3a3 3
A2Aa(3)zx2y2,xya,x0,y0,z a x2 a xxdxdydz0a
xdz152a;y2aaa
0
a
x2 a x2
az a
0
a
x2 aax0;y
x2y2z2
d2d
2R
5cossind
z
x2y2z2dxdydz
4 2R4
32R54
d2d sind
R2 3 a,則0y
,可解得a 3 x2x2求質(zhì)量分布均勻的半個(gè)旋轉(zhuǎn)橢球體xyz
21z0
b 0 0 Dz
x0y0z
2a2b8 求高為h,底半徑為az ha2hz2z
0dzD
12 x0;y0;z
a2h4 設(shè)物體占據(jù)空間區(qū)域V0x10y10z1,在點(diǎn)Mxyz處密度為xyzmxyzdxdydzdxdyxyzdz3 xxxyzdxdydz0dx0dy0xxyzdz65.y5;z5 0 2 P0的距離的平方成正比(k,求此物質(zhì)球體質(zhì)心的位x0;y R2
2z
R2
2
R2 dd
k3cossin2sin2cos d
2
R2 ddk2sin2sin2cos
d 154R
2 設(shè)均勻薄片(面密度為常數(shù)1)D(1)Dx,yaa
I I2121bbI
x2dxdy
x2dyba4(2)Dy29xx2IIIx
2y2dxdy2
9 y2dy
.Iy
2x2dxdy2
92x2dy
9
9 (3)D為矩形閉區(qū)域x,y0xa0yb,求IxIy b
IxDydxdy0dx0ydy3.Iy3已知均勻矩形板()的長(zhǎng)和寬分別為b和h,計(jì)算此
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽(yáng)理工大學(xué)《車(chē)輛人機(jī)工程學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 國(guó)家著作權(quán)軟件著作權(quán)轉(zhuǎn)讓合同
- 2024-2025學(xué)年新教材高中歷史第5課古代非洲與美洲課時(shí)素養(yǎng)評(píng)價(jià)含解析新人教版必修中外歷史綱要下
- 高中歷史第六單元資本主義運(yùn)行機(jī)制的調(diào)節(jié)第19課當(dāng)代資本主義的新變化史料解讀素材北師大版必修2
- 大班音樂(lè)《粗心的小畫(huà)家》課件
- 2024房屋維修工程施工合同
- 2024裝修合同簽署小常識(shí)分享
- 2024辦公設(shè)備采購(gòu)合同范本
- 2024【服務(wù)協(xié)議模板】代駕服務(wù)協(xié)議合同范本
- 2024裝修合同制定的注意事項(xiàng)
- 大學(xué)生職業(yè)生涯規(guī)劃成品
- DL∕T 796-2012 風(fēng)力發(fā)電場(chǎng)安全規(guī)程
- 2024年國(guó)家公務(wù)員考試行測(cè)真題完整版
- MOOC 數(shù)學(xué)文化十講-南開(kāi)大學(xué) 中國(guó)大學(xué)慕課答案
- 漢語(yǔ)拼音字母表默寫(xiě)表
- 泌尿系統(tǒng)梗阻病人的護(hù)理.ppt
- (完整版)初中數(shù)學(xué)中考考試大綱
- 純?nèi)几郀t煤氣鍋爐吸熱特點(diǎn)及運(yùn)行
- 酒駕私了協(xié)議書(shū)——范本
- 森林施工組織設(shè)計(jì)(完整版)
- 304不銹鋼冷軋剝片缺陷分析及控制
評(píng)論
0/150
提交評(píng)論