2021-2022學年四川樂山市中區(qū)高考仿真卷數(shù)學試題含解析_第1頁
2021-2022學年四川樂山市中區(qū)高考仿真卷數(shù)學試題含解析_第2頁
2021-2022學年四川樂山市中區(qū)高考仿真卷數(shù)學試題含解析_第3頁
2021-2022學年四川樂山市中區(qū)高考仿真卷數(shù)學試題含解析_第4頁
2021-2022學年四川樂山市中區(qū)高考仿真卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則()A. B. C. D.2.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度3.已知,函數(shù)在區(qū)間上恰有個極值點,則正實數(shù)的取值范圍為()A. B. C. D.4.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.125.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.637.已知函數(shù)是定義在上的偶函數(shù),當時,,則,,的大小關系為()A. B. C. D.8.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.設集合,,則()A. B.C. D.10.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過11.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.12.已知復數(shù)z,則復數(shù)z的虛部為()A. B. C.i D.i二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.14.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.15.若奇函數(shù)滿足,為R上的單調函數(shù),對任意實數(shù)都有,當時,,則________.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.19.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.20.(12分)已知數(shù)列的前n項和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.21.(12分)已知函數(shù).(1)若在上單調遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.22.(10分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,屬基礎題.2.B【解析】

分析:根據(jù)三角函數(shù)的圖象關系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結合和的關系是解決本題的關鍵.3.B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數(shù)在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數(shù)量積運算和三角恒等變換與三角函數(shù)性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.4.A【解析】

由題意知成等差數(shù)列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質,考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數(shù)列性質,可使得計算量大大減少.5.C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.6.B【解析】

根據(jù)程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.7.C【解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調性比較大小,屬于中檔題.8.B【解析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題9.A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.10.D【解析】

先列表分析近10年全球風力發(fā)電新增裝機容量,再結合數(shù)據(jù)研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.11.A【解析】

根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.12.B【解析】

利用復數(shù)的運算法則、虛部的定義即可得出【詳解】,則復數(shù)z的虛部為.故選:B.【點睛】本題考查了復數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎題.14.【解析】

先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).15.【解析】

根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應用,屬于中檔題.16.11【解析】

由等差數(shù)列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)證明見解析【解析】

(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.18.(Ⅰ);(Ⅱ).【解析】

(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數(shù)根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數(shù)根.當時,易知當,方程在上有且只有一個實數(shù)根.此時方程在上也有一個實數(shù)根.滿足條件.綜上,實數(shù)的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數(shù)求參數(shù)范圍,考查學生的運算能力,是一道中檔題.19.(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.【點睛】本題考查面面垂直的證明以及利用向量法求解二面角有關的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結合圖形分析.20.(1)證明見解析,;(2)11202.【解析】

(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項,分組求和,結合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數(shù)列是首項為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項,2為公差的等差數(shù)列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.21.(1)(2)【解析】

(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構造函數(shù)設,利用求二階導數(shù)的方法,結合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設,,則,令,,在單調遞增,也就是在單調遞增,所以.當即時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論