版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter1 MainInthischapter,wefocusonthefollowingconceptsandDefinitionofaContinuumUnitsandBasic ysisTechniques,controlvolumeandEulerianandLagrangianThermodynamicpropertiesofaViscosityandothersecondaryproperties(Newtonian/non-Newtonian;no-slipcondition,turbulence;surfacetension)FlowVisualizationFlowpatterns--Streamlines,streaklines, DefinitionofaFluidisasubstancethatdeforms變形)continuouslyundertheapplicationofashear(tangential)stressnomatterhowsmallorlargetheshearstressmaybe.3Figure1.1Behaviorof(a)solidand(b)fluid,undertheactionofaconstantshear 與時(shí)間有4MaindifferencesbetweenthebehaviorofsolidsandfluidsunderanappliedforceForasolidthestrain(應(yīng)變)ordeformationisafunctionoftheappliedstressandindependentofthetimeoverwhichtheforceisapplied,providingthattheelasticlimitisnotForafluid,thedeformationisdependentonForasolid,iftheelasticlimitisnotexceeded,thedeformationdisappearswhentheforceisremoved;Afluidcontinuestoflowaslongastheforceisappliedandwillnotrecoveritsoriginalformwhentheforceisremoved.5Fluidsunderashearstressmustbeinakindof Howtokeepthefluidatrest (FWFluidtakesshapeofContinuum連續(xù)介質(zhì)概Allfluidsarecomposedofmoleculesinconstantmotion.Howeverinmostengineeringapplicationsweareinterestedintheaverageormacroscopiceffectsthatweordinarilyperceiveandmeasure.Wethustreatafluidasaninfini ydivisiblesubstance,acontinuum,thusfrommacropointofview,wedonotneedtoconcernwiththebehaviorofindividualmolecules.Thisistheso-calledcontinuumconceptinclassicalfluidmechanics.在經(jīng)典流體力學(xué)中,只考慮分子平均或作用,不考慮單獨(dú)分子的性能 ValidityofcontinuumTheconceptofacontinuumisthebasisofclassicalfluidmechanics.Thecontinuumassumptionisvalidintreatingthebehavioroffluidsundernormalconditions.Itbreaksdownwheneverthemeanfreepathofthemolecules(
7 esthesameorderasthesmallestsignificantcharacteristicdimension(特征長(zhǎng)度)oftheproblem.Forrarefiedgasflow稀薄氣體(e.g.,asencounteredinflightsintotheupperreachesoftheatmosphere);micro-scalechannelflows(inMEMSandevenNEMS,etc.8HowtorepresentflowpropertyatapointinaForexample,thedensityatpointWhenVisshrank(收縮)toaverysmallsize,itthenwillrepresentafluidparticle/element,andthisvolumeistermedelementalvolume. CCVV Inacontinuum,volumeofafluidparticleorelementsatisfy(連續(xù)介質(zhì)中的流體質(zhì)點(diǎn)、流體微團(tuán)滿足下Largeenoughinmicroscope(微觀足夠大Smallenoughinmacroscope(宏觀足夠?。?i.e.109
ofairatstandardconditions y
SignificanceofcontinuumAsaconsequenceofthecontinuumassumption,eachfluidpropertyisassumedtohaveadefinitevalueateverypointinspace.Thereforefluidpropertiessuchasdensity,temperature,velocity,andsoon,areconsideredtobecontinuousfunctionsofpositionandtime,andthisleadtoafield*descriptionoffluidflow.InparticularthevelocityfieldisgivenbyrrNOTE:稀薄微小空間(尺度)“Continuumconcept”breaksdownwheneverthemeanfreepathofthemolecules(分子自由行程) esthesamemagnitudeorder(相同數(shù)量級(jí))asthesmallestsignificantcharacteristicdimension(特征長(zhǎng)度)oftheproblem.若連續(xù)介質(zhì)不適用,應(yīng)如何處理呢?Dimensionand單位與量Dimensionsarepropertiesthatcanbemeasured,e.g.length,velocity,area,volume,accelerationetc.可以測(cè)量的性質(zhì)叫Unitsarethestandardelementsweuse (量化thesedimensionssuchasameter,afoot用來(lái)量化量綱的標(biāo)Itisnotedthat“dimension’isnotapropertyoftheindividualunits,butit lswhattheunitrepresentsAllmeasurable tiescanbedividedintotwogroups: tiesandsecondary PrimaryunitprimarydimensionMLTMMSITL ty–orsecondarydimensionorsecondary ThePrincipleofDimensional量綱一致性additivemustbedimensionallyhomogeneousandsimultaneouslybeconsistentinunitsDifferentsystemsandconversionBritishGravitationalunitsChineseEngineeringUnits(中國(guó)工程單位).metricSIsystem公制或國(guó)際單位制TheSISEEpage850–AppendixC:Conversion1.41.4Basicysiscontrolvolumeandsystem,EulerianLagrangianBasic ysisTherearethreedifferentwaystotackleafluidflow ysis(積分分析lookingatgrosseffectoffluidparticlesincontrolvolumeorsystem–ToobtainsomeintegralDifferentialysis(微分分析)lookingatinfinitesimal(極微小的)systemorcontrolvolume(localindividualbehaviour)–Toobtaindifferentialequations ysis(量綱分析)isusedinexperimentalstudyoffluidflowtorearrangeflowparametersandobtaindimensionlessparametergroups,suchasRe,Ma,etc.throughwhichwecannotobtainanexactflowsolution.ControlvolumeandTheabovementionedflow ysiscanbecarriedoutforafluidsystemoracontrolvolume.Asystemisdefinedasafixed tyandfixedidentityofmass;thesystemboundariesseparatethesystemfromthesurroundings.Theboundariesofthesystemmaybefixedormovable,butthereisnomasstransferacrossthesystemboundaries.Piston-cylinderAfluidsystemfixedmassandfixedidentityofItisnotedalltheequationsareestablishedforafixedmassintegrity.DifficultyarisesfortreatingafluidInfact,weveryoftenconcernedwiththeflowoffluidsthroughadevice,suchascompressor,turbines,pipelines,nozzles.Inthesecases,itisdifficulttofocusourattentiononafixedidentifiable tyofmass.Itismuchmoreconvenientto yzingavolumeinspacethroughwhichthefluidflows.Controlvolumeisanarbitraryvolumeinspace,chosenby yst,withopenboundariesthroughwhichmass,momentum,andenergyareallowedtocross.ItsboundaryiscalledcontrolPPipFlowFluidflowthroughaItisnotedThecontrolvolumemaybefixed,movingordeformable(固定、運(yùn)動(dòng)、變形).Controlvolumecanbebothfiniteand ysisisusedforafinitevolume,whiledifferential usedforaninfinitesimalvolumeCanweusetheconservationequations(suchasenergyconservationequation,momentumconservationequation)introducedinpreviouscoursesdirectlytoacontrolvolume?Itisnotedthatallconservationequationsthatyoulearnedinpreviouscoursesareestablishedforasystem(afixedmassintegrity), suchasNewton’slaw,lawsofthermodynamics,etc.;theseequationscannotbedirectlyusedforacontrolvolume.Sincethecontrolvolumedoesnothaveafixed tyandidentityofmass!3Lagrangian&EulerTherearetwodistinctwaystodescribefluidflow(toestablishtheequationsofmotion),andtheyareLarangianandEulerianmethod.Lagrangianapproachwedealwithasystemandapplybasicequationstoa tyandidentityofmass(namelysystemasdefinedabove),forinstance,theapplicationofNewton’ssecondlawtoaparticleoffixedmass.SuchaapproachisoftentermedLagrangianapproach.Indifferential ysis,Lagrangianapproachfocusesona tyofmass,andtracethehistoryofpropertyforindividualfluidparticles(orelementalbodyofmassFrvtr(rr)rrrardd2rdrr(a,b,c)v.r(a,b,rrV a,andrrrSincea,V a,andrrr
ItisnotedthatinLagrangianframe(在日框架下),flowparametersareexpressedasrV(a,b,c,t)P(a,b,c,t)(a,b,c,t)Wherea,b,&careconstants,andtheyrepresentinitialposition初始位置ofthefluidApplicationofLagrangianLagrangianapproachspecifieshistoryofpropertiesforindividualfluidparticles.Forexample,itisusedtotrackdiscreteparticlesanddroplets(離散粒子和液滴)inacontinuousfluid.Lagrangianapproachtracesallparticles(e.g.1,2,and3…..N)atinitialandsuccessivetimeinstant(a1,b1,c1,
,
,
,particle particle3
(a3,b3,c3,ty
t2Eulerapproach-focusesonflowpropertiesatagivenpointinspaceoragivenfinitecontrolvolume(throughwhichdifferentfluidparticlesmaypassatdifferenttimeinstants.)Itisnotedthatinanintegral ysisweshouldconsiderafinitecontrolvolumewithfixedboundary,whileinadifferential ysisweshouldconsideraninfinitesimalcontrolvolumeofagivenpointinspace.EulerEulerapproachfordifferential ysisfocusingonflowpropertyatanarbitrarypoint(ofaninfinitesimalcontrolvolume,微小的容積).ItisnotedthatinEulerframe(在框架下vv(x,y,z,tp(x,y,z,t(x,y,z,trTheapproachisbasedonfieldIngeneral,velocityisavectorfunctionofpositionandthushasthreecomponents,u,v,andw,andwritten 3Eulerapproachforintegral ysisfocusingonafinitecontrolvolume(有限大容積)withfixed3PPipControlFlowFluidflowthroughaThermodynamicpropertiesofaVelocityarethemostimportantfluidproperty,anditinteractscloselywiththethermodynamicpropertiesofthefluid.Thefollowing9tiesarethermodynamicpropertiesdeterminedbythermodynamicconditionorstate.Basic(intensive) OtherintensivePressureDensityTransportCoefficientofviscosity
Enthalpyh=?p/Entropy
weightVgg limmVV'(g)liquidV(V1000(g)gasV( 1.205Specificgravity(SG,)比引力或比(waterat(airat20°C&Internal,PotentialandKineticInternalmolecularbondingPotential
molecularactivityKineticfludmechanicssumofthree e?1/2V2 Wedefinezasupward,
gr
andwee?1/2V2Viscosityandothersecondary tiessuchaspressure,temperature,anddensityareprimarythermodynamicproperties(variables).Certainsecondaryproperties(variables)alsocharacterizespecificfluidmechanicalbehavior.Viscosityisthemostimportantsecondaryproperty,whichrelatesthelocalstressestothestrainrateofthemovingfluidelement.Itisa tativemeasureofafluid's toflow,inparticular,itdeterminesthefluidstrainrategeneratedbyagivenappliedshearViscosityisthepropertyofafluid,duetocohesionandinteractionbetweenmolecules,whichoffers sheardeformation.粘DifferentfluidsdeformatdifferentratesunderthesameshearTherelationshipamongstress,strainordeformationrate,viscosityisdifferentfordifferentDeformationofa 平板作用于流體上的切應(yīng)力 A0 )流體的變形率(deformation)
limt0MM'之間的距 l lu故t 流體的變形率(deformationdd
Evenamongfluids,therecarewidedifferencesinthebehaviorunderstress.Accordingtotherelationbetweentheappliedshearstress,andtherateofdeformation,fluidsareclassifiedintoNewtonianandnon-newtonian流體與 NewtonianFluidsinwhichappliedshearstressisdirectlyproportionalto(正比于)rateofdeformationaretermedNewtonianfluids.
SuchapropertyoffluidsisaconstantforallNewtonianfluids,termeddynamicviscosity(動(dòng)力粘性)/orabsoluteviscosity Newton’slawofviscosity(內(nèi)摩擦定律 Dynamicviscosityorabsolute
m2//Non-Newtonianfluids(非流體non-NewtonianfluidsdonotsatisfyNewton’slawofviscosity. Fornon-Newtonianfluids,theviscositycommonlyisnotaconstant. Figure1.9Rheologicalbehaviorofvariousmaterials:(a)Stressversusstrainrate--Comparisonsofnewtonianand newtonianfluids;(b)Effectoftimeonappliedstress--Tomaintainaconstantstrainratewithtime,thestressrequiredisdifferentforcommonfluids,rehopecticfluids,andthixotropicfluidsViscosityvarieswith
粘性隨壓力的變TheviscosityofNewtonianfluidsisatruethermodynamicpropertyandvarieswithtemperatureandGenerallyspeaking,theviscosityofafluidincreasesonlyweaklywithpressure.Forinstance,increasingpfrom1atmto50atmwillincreaseμofaironly10%.Itiscustomaryinmostengineeringworktoneglecttheinfluenceofpressurevariationonviscosityoffluids.Viscositymainlyvarieswith粘性隨溫度變Viscosityofgasesincreaseswithtemperature,whereasforliquids,viscositydecreaseswithincreasingThereasonisthatviscosityresultsfromthecombinedeffectofinteractionandcohesionofmolecules,andtheyplaydifferentrolesingasesandliquids.Forgases--Themoleculesofgasesareonlyweaklykeptinpositionbymolecularcohesion(astheyaresofarapart).Asadjacentlayersmovebyeachotherthereisacontinuousexchangeofmomentum.Moleculesofaslowerlayermovetofasterlayerscausingdrag,whilemoleculesmovingtheotherwayexertanaccelerationforce.氣體聚合力小,分子動(dòng)量交換強(qiáng),間動(dòng)量交換Iftemperatureofagasincreasesthemomentumexchangebetweenlayerswillincreasethusincreasingviscosity.Forliquids--Thoughthereissomemolecularinteraction,butasthemoleculesaresomuchcloserthaningases,thecohesiveforceholdthemoleculesinplacemuchmorerigidly.Thiscohesionplaysanimportantroleintheviscosityofliquids.Increasingthetemperatureofaliquidreducesthecohesiveforcesandthen todeformationdecreases,thusdecreasingviscosity.Deceasingthetemperatureofaliquidincreasecohesiveforcesthusincreasingviscosity.NotionsrelatedtoNo-slip
i.e.atsolidboundary,
Turbulent
Withoutviscosity,therewouldnotbeanyturbulentflowatall!Figure1.15:VelocityNo-slipconditioninwaterflowpastathinfixedLaminarSurfacetension表面張Surfacetensionisgeneratedattheinterface界面AmoleculeIintheinteriorofaliquidisunderattractiveforces(i.e.cohesion)inalldirectionsandthevectorsumoftheseforcesiszero.ButamoleculeSatthesurfaceofaliquidisactedbyanetinwardcohesiveforcethatisperpendiculartothesurface.Hencetheinterfacerequiresworktomovemoleculestothesurfaceagainstthisopposing(cohesion)force,andsurfacemoleculeshavemoreenergythaninteriorones
ofliquidsandSurfacetensionofaliquidistheworkthatmustbedonetobringenoughmoleculesfrominsidetheliquidtothesurfacetoformoneunitareaofthatsurface(J/m2=N/m).SurfacetensionmustsatisfyminimumenergySurfacetensionleadingtocapillarity毛細(xì)管現(xiàn)象Surfacetensioncausesdropsofliquidtotendtotakeasphericalshape.Thisisresponsibleforcapillaryactionandcausesaliquidtoriseordropinafinetubewhenitslowerendisinvertedinaliquid.ExampleExampleFigureRiseorLiquidsriseintubesiftheyadhesionofsolidsurface(粘附力)>cohesion(聚合力)andfallintubesifcohesion>adhesionNote:Whenuseacolumnofliquidtomeasurepressure,oneshouldremembertocorrecthis/herreadingerrorsresultedfromcapillarity!!FlowpatternsStreamlines,streaklines,andpathlinesForFlowVisualizationFlowpatternscanbevisualizedindifferentways,wecansketchesandphotographstodescribetheflowqualitativelyandFourbasictypesofline'spatternsareusedtovisualizethe1Pathline(跡線isatra
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《黃金走勢(shì)技術(shù)分析》課件
- 專題07 圖形的軸對(duì)稱、平移與旋轉(zhuǎn)(解析版)
- 書店企劃述職報(bào)告范文
- 護(hù)士大學(xué)生職業(yè)規(guī)劃
- 2025年南京c1貨運(yùn)從業(yè)資格證考試題下載
- 2025年南陽(yáng)貨運(yùn)員初級(jí)考試題庫(kù)
- 《銀行授信方案》課件
- 校園安全人人有責(zé)班會(huì)
- 2025年臺(tái)州運(yùn)輸從業(yè)資格證考試技巧
- 應(yīng)聘銷售業(yè)務(wù)經(jīng)理管理
- 國(guó)網(wǎng)基建國(guó)家電網(wǎng)公司輸變電工程結(jié)算管理辦法
- 深度學(xué)習(xí)數(shù)學(xué)案例(課堂PPT)
- 中國(guó)地圖含省份信息可編輯矢量圖
- 臥式鉆床液壓系統(tǒng)設(shè)計(jì)課件
- 路政運(yùn)政交通運(yùn)輸執(zhí)法人員考試題庫(kù)
- 水庫(kù)維修養(yǎng)護(hù)工程施工合同協(xié)議書范本
- MS培養(yǎng)基及配制注意事項(xiàng)
- 企業(yè)技術(shù)標(biāo)準(zhǔn)化管理
- 投資學(xué)第19章財(cái)務(wù)分析stu
- 已有輸華貿(mào)易的國(guó)家(地區(qū))及水產(chǎn)品品種目錄
- 1999年天津高考理科數(shù)學(xué)真題及答案
評(píng)論
0/150
提交評(píng)論