版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年湖南省常德市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面
5.過點(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
6.A.A.-(1/2)B.1/2C.-1D.2
7.
8.
9.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
10.A.A.0
B.
C.arctanx
D.
11.A.A.1B.2C.3D.4
12.A.A.e2/3
B.e
C.e3/2
D.e6
13.A.A.
B.
C.
D.
14.
15.為了提高混凝土的抗拉強度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。
A.
B.
C.
D.
16.A.A.
B.x2
C.2x
D.2
17.
18.
19.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
20.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
二、填空題(20題)21.
22.
23.
24.25.過原點且與直線垂直的平面方程為______.26.27.
28.
29.設(shè)y=ex/x,則dy=________。30.
31.
32.33.34.
35.
36.37.38.39.40.微分方程dy+xdx=0的通解y=_____.三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.
43.
44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
47.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.51.求微分方程的通解.52.當x一0時f(x)與sin2x是等價無窮小量,則
53.
54.將f(x)=e-2X展開為x的冪級數(shù).
55.
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.57.58.證明:59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.設(shè)y=ln(1+x2),求dy。62.63.計算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.
64.y=xlnx的極值與極值點.
65.
66.
67.
68.求微分方程y"-3y'+2y=0的通解。
69.
70.(本題滿分10分)設(shè)F(x)為f(x)的-個原函數(shù),且f(x)=xlnx,求F(x).五、高等數(shù)學(xué)(0題)71.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點六、解答題(0題)72.
參考答案
1.A解析:
2.C
3.A解析:
4.D本題考查了二次曲面的知識點。
5.A
6.A
7.D
8.A解析:
9.C
10.A
11.A
12.D
13.D
14.A
15.D
16.D本題考查的知識點為原函數(shù)的概念.
可知應(yīng)選D.
17.D
18.A解析:
19.C
20.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
21.y=xe+Cy=xe+C解析:
22.
23.
24.25.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
26.1/3本題考查了定積分的知識點。
27.
28.
解析:
29.
30.
31.+∞(發(fā)散)+∞(發(fā)散)
32.33.1.
本題考查的知識點為函數(shù)連續(xù)性的概念.
34.
35.>36.0.
本題考查的知識點為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.
37.In2
38.0本題考查了利用極坐標求二重積分的知識點.
39.40.
41.
42.由一階線性微分方程通解公式有
43.
則
44.
45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
46.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
47.
48.由二重積分物理意義知
49.
50.
列表:
說明
51.52.由等價無窮小量的定義可知
53.
54.
55.
56.
57.
58.
59.函數(shù)的定義域為
注意
60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.63.利用極坐標計算,
64.y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當0<x<e-1時y'<0;當e-1<x時y'>0.可知x=e-1為y=xlnx的極小值點.極小值為y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當0<x<e-1時,y'<0;當e-1<x時,y'>0.可知x=e-1為y=xlnx的極小值點.極小值為
65.66.本題考查的知識點為定積分的換元積分法.
67.
68.y"-3y'+2y=0特征方程為r2-3r+2=0(r-1)(r-2)=0。特征根為r1=1r2=2。方程的通解為y=C1ex+C2e2x。y"-3y'+2y=0,特征方程為r2-3r+2=0,(r-1)(r-2)=0。特征根為r1=1,r2=2。方程的通解為y=C1ex+C2e2x。69.本題考查的知識點為導(dǎo)數(shù)的應(yīng)用.
單調(diào)增加區(qū)間為(0,+∞);
單調(diào)減少區(qū)間為(-∞,0);
極小值為5,極小值點為x=0;
注上述表格填正確,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽省六安市2023-2024年度滬科版數(shù)學(xué)九年級上學(xué)期綜合測試卷
- 2024-2030年中國大米行業(yè)營銷戰(zhàn)略與供應(yīng)情況預(yù)測報告
- 2024-2030年中國垃圾中轉(zhuǎn)設(shè)備行業(yè)發(fā)展分析及投資戰(zhàn)略研究報告版
- 2024-2030年中國商業(yè)地產(chǎn)行業(yè)發(fā)展前景預(yù)測及投融資策略分析報告
- 2024-2030年中國衛(wèi)浴墊產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報告
- 2024年版:呂桃與配偶解除婚姻關(guān)系協(xié)議
- 2024年施工安全協(xié)議書編制指南及審查標準2篇
- 2024年版離婚合同規(guī)范格式版B版
- 2024年個人信用評估與貸款審核委托協(xié)議3篇
- 2024年版:市場推廣專員合同3篇
- 機械專業(yè)職業(yè)生涯規(guī)劃
- 護士法律法規(guī)培訓(xùn)通用課件
- 幼兒園大班建構(gòu)式課程
- 終端設(shè)備量子通信與后量子密碼技術(shù)
- 新北師大版小學(xué)數(shù)學(xué)二年級上冊《六-測量:課桌有多長》-公開課教案-1
- 云南中煙公司招聘考試題目
- 論社會系統(tǒng)研究方法及其運用讀馬克思主義與社會科學(xué)方法論有感
- 環(huán)境監(jiān)測投標書
- 支氣管鏡術(shù)后護理常規(guī)
- 兒科護理培訓(xùn):兒童流行性感冒護理
- 部隊汽車維修培訓(xùn)課件
評論
0/150
提交評論