版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數(shù)關系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發(fā)后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地2.2018年我市財政計劃安排社會保障和公共衛(wèi)生等支出約1800000000元支持民生幸福工程,數(shù)1800000000用科學記數(shù)法表示為()A.18×108B.1.8×108C.1.8×109D.0.18×10103.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.4.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.5.如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為()A.1 B. C. D.6.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-37.甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個8.某校體育節(jié)有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)9.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-1010.已知方程x2﹣x﹣2=0的兩個實數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣1二、填空題(共7小題,每小題3分,滿分21分)11.雙察下列等式:,,,…則第n個等式為_____.(用含n的式子表示)12.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.13.不等式5x﹣3<3x+5的非負整數(shù)解是_____.14.如圖,在梯形中,,E、F分別是邊的中點,設,那么等于__________(結果用的線性組合表示).15.已知直線與拋物線交于A,B兩點,則_______.16.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33017.若a,b互為相反數(shù),則a2﹣b2=_____.三、解答題(共7小題,滿分69分)18.(10分)某單位為了擴大經(jīng)營,分四次向社會進行招工測試,測試后對成績合格人數(shù)與不合格人數(shù)進行統(tǒng)計,并繪制成如圖所示的不完整的統(tǒng)計圖.(1)測試不合格人數(shù)的中位數(shù)是.(2)第二次測試合格人數(shù)為50人,到第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統(tǒng)計圖和扇形統(tǒng)計圖.19.(5分)如圖所示,平面直角坐標系中,O為坐標原點,二次函數(shù)的圖象與x軸交于、B兩點,與y軸交于點C;(1)求c與b的函數(shù)關系式;(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當時,連接PC,求的值.20.(8分)已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=4521.(10分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負整數(shù)解.22.(10分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.23.(12分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.24.(14分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發(fā)時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉(zhuǎn)折點的含義是解決這一類題的關鍵.2、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:1800000000=1.8×109,故選:C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.4、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關.5、C【解析】連接AE,OD,OE.∵AB是直徑,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等邊三角形.∴∠A=60°.又∵點E為BC的中點,∠AED=90°,∴AB=AC.∴△ABC是等邊三角形,∴△EDC是等邊三角形,且邊長是△ABC邊長的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE圍成的部分的面積=和弦DE圍成的部分的面積.∴陰影部分的面積=.故選C.6、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.7、B【解析】
根據(jù)題意,兩車距離為函數(shù),由圖象可知兩車起始距離為80,從而得到乙車速度,根據(jù)圖象變化規(guī)律和兩車運動狀態(tài),得到相關未知量.【詳解】由圖象可知,乙出發(fā)時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【點睛】本題以函數(shù)圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數(shù)關系,解答時既要注意圖象變化趨勢,又要關注動點的運動狀態(tài).8、C【解析】13個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分數(shù)和中位數(shù)就可以知道是否獲獎了.故選C.9、C【解析】
根據(jù)多項式乘以多項式的法則進行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.10、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.二、填空題(共7小題,每小題3分,滿分21分)11、=【解析】
探究規(guī)律后,寫出第n個等式即可求解.【詳解】解:…則第n個等式為故答案為:【點睛】本題主要考查二次根式的應用,找到規(guī)律是解題的關鍵.12、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.13、0,1,2,1【解析】5x﹣1<1x+5,移項得,5x﹣1x<5+1,合并同類項得,2x<8,系數(shù)化為1得,x<4所以不等式的非負整數(shù)解為0,1,2,1;故答案為0,1,2,1.【點睛】根據(jù)不等式的基本性質(zhì)正確解不等式,求出解集是解答本題的關鍵.14、.【解析】
作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.15、【解析】
將一次函數(shù)解析式代入二次函數(shù)解析式中,得出關于x的一元二次方程,根據(jù)根與系數(shù)的關系得出“x+x=-=,xx==-1”,將原代數(shù)式通分變形后代入數(shù)據(jù)即可得出結論.【詳解】將代入到中得,,整理得,,∴,,∴.【點睛】此題考查了二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì),解題關鍵在于將一次函數(shù)解析式代入二次函數(shù)解析式16、不合理,樣本數(shù)據(jù)不具有代表性【解析】
根據(jù)表中所取的樣本不具有代表性即可得到結論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關鍵.17、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解析】
(1)將四次測試結果排序,結合中位數(shù)的定義即可求出結論;(2)由第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,可求出第四次測試合格人數(shù),設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數(shù),即可得出關于x的一元二次方程,解之取其中的正值即可得出結論;(3)由第二次測試合格人數(shù)結合平均增長率,可求出第三次測試合格人數(shù),根據(jù)不合格總?cè)藬?shù)÷參加測試的總?cè)藬?shù)×100%即可求出不合格率,進而可求出合格率,再將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整,此題得解.【詳解】解:(1)將四次測試結果排序,得:30,40,50,60,∴測試不合格人數(shù)的中位數(shù)是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數(shù)的平均數(shù)為(60+40+30+50)÷4=1(人),∴第四次測試合格人數(shù)為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據(jù)題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統(tǒng)計圖與扇形統(tǒng)計圖如解圖所示.【點睛】本題考查了一元二次方程的應用、扇形統(tǒng)計圖、條形統(tǒng)計圖、中位數(shù)以及算術平均數(shù),解題的關鍵是:(1)牢記中位數(shù)的定義;(2)找準等量關系,正確列出一元二次方程;(3)根據(jù)數(shù)量關系,列式計算求出統(tǒng)計圖中缺失數(shù)據(jù).19、(1);(2);(3)【解析】
(1)把A(-1,0)代入y=x2-bx+c,即可得到結論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當x=0時,得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結論.【詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點D為拋物線頂點,∴,∴,當時,,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設,則,∴,同理,設,則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當時,,∴,∴,∴,∵,∴,∴,,,過P作于T,∴,∴,∴.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構造直角三角形是解題的關鍵.20、(1)作圖見解析;(2)⊙O的半徑為52【解析】
(1)作出相應的圖形,如圖所示;(2)由平行四邊形的對邊平行得到AD與BC平行,可得同旁內(nèi)角互補,再由AE與BE為角平分線,可得出AE與BE垂直,利用直徑所對的圓周角為直角,得到AF與FB垂直,可得出兩銳角互余,根據(jù)角平分線性質(zhì)及等量代換得到∠AGF=∠AEB,根據(jù)sin∠AGF的值,確定出sin∠AEB的值,求出AB的長,即可確定出圓的半徑.【詳解】解:(1)作出相應的圖形,如圖所示(去掉線段BF即為所求).(2)∵AD∥BC,∴∠DAB+∠CBA=180°.∵AE與BE分別為∠DAB與∠CBA的平分線,∴∠EAB+∠EBA=90°,∴∠AEB=90°.∵AB為⊙O的直徑,點F在⊙O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°.∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45=AE∵AE=4,∴AB=5,∴⊙O的半徑為52【點睛】此題屬于圓綜合題,涉及的知識有:圓周角定理,平行四邊形的判定與性質(zhì),角平分線性質(zhì),以及銳角三角函數(shù)定義,熟練掌握各自的性質(zhì)及定理是解本題的關鍵.21、-【解析】【分析】先根據(jù)分式的運算法則進行化簡,然后再求出不等式的非負整數(shù)解,最后把符合條件的x的值代入化簡后的結果進行計算即可.【詳解】原式=,=,=,∵﹣(x﹣1)≥,∴x﹣1≤﹣1,∴x≤0,非負整數(shù)解為0,∴x=0,當x=0時,原式=-.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練掌握分式的運算法則.22、(1)見解析(2)見解析【解析】
(1)由三角形中位線知識可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;
(2)連結BH,交AC于點O,利用平行四邊形的對角線互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點F、G是邊AC的三等分點,
∴AF=FG=GC.
又∵點D是邊AB的中點,
∴DH∥BG.
同理:EH∥BF.
∴四邊形FBGH是平行四邊形,
連結BH,交AC于點O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四邊形FBGH是菱形;
(2)∵四邊形FBGH是平行四邊形,
∴BO=HO,F(xiàn)O=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四邊形ABCH是平行四邊形.
∵AC⊥BH,AB=BC,
∴四邊形ABCH是正方形.【點睛】本題考查正方形的判定,菱形的判定和性質(zhì),三角形的中位線,熟練掌握正方形的判定和性質(zhì)是解題的關鍵.23、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】
(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標,再根據(jù)函數(shù)解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關于原點對稱,∴P′(﹣m,﹣t),當y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智慧社區(qū)安防系統(tǒng)設計與施工一體化合同
- 未來冰雪經(jīng)濟發(fā)展的挑戰(zhàn)與機遇
- 2024年知識共享:講師與在線平臺合作協(xié)議
- 2025版預制構件鋼筋安裝施工與裝配式建筑技術合同3篇
- 魚塘防水施工方案
- 2024年貨物運輸保障合同
- 2024年透明質(zhì)酸項目可行性研究報告
- 2024機械施工合同范本
- 2025年中國抗哮喘藥物未來趨勢預測分析及投資規(guī)劃研究建議報告
- 2024棄土填埋場運營管理與合同執(zhí)行協(xié)議3篇
- 英國簽證戶口本翻譯模板(匯編)
- 中小企業(yè)內(nèi)部控制與風險管理(第二版)項目一:內(nèi)部控制與風險管理基礎
- 駕駛艙資源管理緒論課件
- 聲藝 EPM8操作手冊
- 西北農(nóng)林科技大學專業(yè)學位研究生課程案例庫建設項目申請書(MBA)
- 外墻保溫、真石漆施工技術交底
- 車床日常點檢表
- 配網(wǎng)工程施工監(jiān)理管理要點~.docx
- 國內(nèi)No.7信令方式技術規(guī)范----綜合業(yè)務數(shù)字網(wǎng)用戶部分(ISUP)
- 尾礦庫在線監(jiān)測方案)
- 房屋安全簡易鑒定表.docx
評論
0/150
提交評論