2022-2023學年廣東省廣州市增城區(qū)中考考前最后一卷數(shù)學試卷含解析_第1頁
2022-2023學年廣東省廣州市增城區(qū)中考考前最后一卷數(shù)學試卷含解析_第2頁
2022-2023學年廣東省廣州市增城區(qū)中考考前最后一卷數(shù)學試卷含解析_第3頁
2022-2023學年廣東省廣州市增城區(qū)中考考前最后一卷數(shù)學試卷含解析_第4頁
2022-2023學年廣東省廣州市增城區(qū)中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.2.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構成完全平方式的概率是()A.1B.12C.133.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個4.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.55.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數(shù)相加得到一個數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.66.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.7.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°8.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣59.如圖,這是根據(jù)某班40名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.因式分解a3-6a2+9a=_____.12.若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點,則常數(shù)m的值是.13.三人中有兩人性別相同的概率是_____________.14.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關系是_____.15.已知a+1a=3,則a16.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為_____.17.據(jù)媒體報道,我國研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,將204000這個數(shù)用科學記數(shù)法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數(shù).)19.(5分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?20.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=8(1)求一次函數(shù)的解析式;(2)求ΔAOB的面積。21.(10分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數(shù)圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數(shù)圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數(shù)關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?22.(10分)計算:(-1)-1-++|1-3|23.(12分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?24.(14分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:a=%,并補全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

利用相似三角形的性質(zhì)即可判斷.【詳解】設AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.3、B【解析】

根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).4、B【解析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.5、C【解析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.6、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.7、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.8、B【解析】

由科學計數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學計數(shù)法,熟記相關概念是解題關鍵.9、A【解析】

根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當作中位數(shù).10、A【解析】

列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.二、填空題(共7小題,每小題3分,滿分21分)11、a(a-3)2【解析】

根據(jù)因式分解的方法與步驟,先提取公因式,再根據(jù)完全平方公式分解即可.【詳解】解:故答案為:.【點睛】本題考查因式分解的方法與步驟,熟練掌握方法與步驟是解答關鍵.12、0或1【解析】分析:需要分類討論:①若m=0,則函數(shù)y=2x+1是一次函數(shù),與x軸只有一個交點;②若m≠0,則函數(shù)y=mx2+2x+1是二次函數(shù),根據(jù)題意得:△=4﹣4m=0,解得:m=1。∴當m=0或m=1時,函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點。13、1【解析】分析:由題意和生活實際可知:“三個人中,至少有兩個人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個人的性別是相同的,∴P(三人中有二人性別相同)=1.點睛:列出本題中所有的等可能結果是解題的關鍵.14、y2<y3<y1【解析】

把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點睛】本題主要考查二次函數(shù)圖象上點的坐標特征,掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是解題的關鍵.15、7【解析】

根據(jù)完全平方公式可得:原式=(a+116、4【解析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點:等邊三角形的判定與性質(zhì);平行線的性質(zhì).17、2.04×1【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:204000用科學記數(shù)法表示2.04×1.故答案為2.04×1.點睛:本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.19、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】

(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;

(2)把(1)中的解析式進行配方得到頂點式然后根據(jù)二次函數(shù)的最值問題求解;

(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數(shù)關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.20、(1)y=x+2;(2)6.【解析】

(1)由反比例函數(shù)解析式根據(jù)點A的橫坐標是2,點B的縱坐標是-2可以求得點A、點B的坐標,然后根據(jù)待定系數(shù)法即可求得一次函數(shù)的解析式;(2)令直線AB與y軸交點為D,求出點D坐標,然后根據(jù)三角形面積公式進行求解即可得.【詳解】(1)當x=2時,y=當y=-2時,-2=8x所以點A(2,4),點B(-4,-2),將A,B兩點分別代入一次函數(shù)解析式,得2k+b=4-4k+b=-2解得:k=1b=2所以,一次函數(shù)解析式為y=(2)令直線AB與y軸交點為D,則OD=b=2,SΔAOB【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握待定系數(shù)法是解本題的關鍵.21、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解析】

(1)根據(jù)圖①可得出總工作量為370件,根據(jù)圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數(shù)解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數(shù)關系式;設y乙的函數(shù)解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數(shù)解析式;(3)聯(lián)立y甲與改進后y乙的函數(shù)解析式即可得出答案.【詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數(shù)解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時完成50件,所以乙每小時完成20件,當0≤t≤2時,可得y乙=20t;當2<t≤5時,設y=ct+d,將點(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).綜上可得:y甲=30t(0≤t≤5);y乙=.(3)由題意得:,解得:t=,故改進后﹣2=小時后乙與甲完成的工作量相等.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是能讀懂函數(shù)圖象所表示的信息,另外要熟練掌握待定系數(shù)法求函數(shù)解析式的知識.22、-1【解析】試題分析:根據(jù)運算順序先分別進行負指數(shù)冪的計算、二次根式的化簡、0次冪的運算、絕對值的化簡,然后再進行加減法運算即可.試題解析:原式=-1-=-1.23、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論