版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–22.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y13.2012﹣2013NBA整個常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小4.在同一平面內(nèi),下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經(jīng)過直線外一點有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,其中正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個5.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,276.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m7.已知一次函數(shù)y=kx+3和y=k1x+5,假設(shè)k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.9.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.1210.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.⊙M的圓心在一次函數(shù)y=x+2圖象上,半徑為1.當(dāng)⊙M與y軸相切時,點M的坐標(biāo)為_____.12.計算﹣的結(jié)果為_____.13.將點P(﹣1,3)繞原點順時針旋轉(zhuǎn)180°后坐標(biāo)變?yōu)開____.14.若關(guān)于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當(dāng)m=1、2、3、…、2018時,相應(yīng)的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.15.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當(dāng)兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.16.已知同一個反比例函數(shù)圖象上的兩點、,若,且,則這個反比例函數(shù)的解析式為______.17.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過AC的中點D,E為⊙O上的一點,連接DE,BE,DE與AB交于點F.求證:BC為⊙O的切線;若F為OA的中點,⊙O的半徑為2,求BE的長.19.(5分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長.20.(8分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.21.(10分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達(dá)B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護(hù)區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進(jìn)行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?22.(10分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(12分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.24.(14分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.2、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.3、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機(jī)會的大小的概念,只是表示發(fā)生的機(jī)會的大小,機(jī)會大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。4、C【解析】
根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內(nèi),經(jīng)過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【點睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.5、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.6、C【解析】分析:結(jié)合2個圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.7、B【解析】
依題意在同一坐標(biāo)系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意作出相應(yīng)的圖像.8、C【解析】
根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關(guān)于a的一元一次不等式組,解之即可得出結(jié)論.【詳解】解:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結(jié)合根的判別式列出關(guān)于a的一元一次不等式組是解題的關(guān)鍵.9、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進(jìn)而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)10、A【解析】分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.二、填空題(共7小題,每小題3分,滿分21分)11、(1,)或(﹣1,)【解析】
設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),再根據(jù)⊙M的半徑為1即可得出y的值.【詳解】解:∵⊙M的圓心在一次函數(shù)y=x+2的圖象上運動,∴設(shè)當(dāng)⊙M與y軸相切時圓心M的坐標(biāo)為(x,x+2),∵⊙M的半徑為1,∴x=1或x=?1,當(dāng)x=1時,y=,當(dāng)x=?1時,y=.∴P點坐標(biāo)為:(1,)或(?1,).故答案為(1,)或(?1,).【點睛】本題考查了切線的性質(zhì)與一次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是熟練的掌握切線的性質(zhì)與一次函數(shù)圖象上點的坐標(biāo)特征.12、.【解析】
根據(jù)同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關(guān)鍵.13、(1,﹣3)【解析】
畫出平面直角坐標(biāo)系,然后作出點P繞原點O順時針旋轉(zhuǎn)180°的點P′的位置,再根據(jù)平面直角坐標(biāo)系寫出坐標(biāo)即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉(zhuǎn)180°后的對應(yīng)點P′的坐標(biāo)為(1,-3).
故答案是:(1,-3).【點睛】考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),作出圖形,利用數(shù)形結(jié)合的思想求解更簡便,形象直觀.14、.【解析】
利用根與系數(shù)的關(guān)系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關(guān)系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.15、1【解析】
畫出圖形,設(shè)菱形的邊長為x,根據(jù)勾股定理求出周長即可.【詳解】當(dāng)兩張紙條如圖所示放置時,菱形周長最大,設(shè)這時菱形的邊長為xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周長為1cm.
故答案是:1.【點睛】解答關(guān)鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.16、y=【解析】解:設(shè)這個反比例函數(shù)的表達(dá)式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,所有在反比例函數(shù)上的點的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).同時考查了式子的變形.17、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關(guān)系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關(guān)系是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)【解析】
(1)連接BD,由圓周角性質(zhì)定理和等腰三角形的性質(zhì)以及已知條件證明∠ABC=90°即可;(2)連接OD,根據(jù)已知條件求得AD、DF的長,再證明△AFD∽△EFB,然后根據(jù)相似三角形的對應(yīng)邊成比例即可求得.【詳解】(1)連接BD,∵AB為⊙O的直徑,∴BD⊥AC,∵D是AC的中點,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切線;(2)連接OD,由(1)可得∠AOD=90°,∵⊙O的半徑為2,F(xiàn)為OA的中點,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【點睛】本題考查了切線的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理的運用;證明某一線段是圓的切線時,一般情況下是連接切點與圓心,通過證明該半徑垂直于這一線段來判定切線.19、(1)見解析;(2).【解析】
(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點睛】本題考查了全等三角形的判定與性質(zhì)與弧長的計算,解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與弧長的公式.20、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】
(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計算,全等三角形的性質(zhì)和判定,第三問構(gòu)造全等三角形找到與∠BMF相等的角為解題的關(guān)鍵.21、(1)不會穿過森林保護(hù)區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護(hù)區(qū),也就是求C到MN的距離.要構(gòu)造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設(shè)CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護(hù)區(qū).(2)設(shè)原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.22、35km【解析】試題分析:如圖作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設(shè)CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加油站人員培訓(xùn)
- 大學(xué)生社會實踐活動管理制度
- 旅游業(yè)項目管理內(nèi)部控制制度
- 射頻通信全鏈路系統(tǒng)設(shè)計 課件 第2章 射頻通信系統(tǒng)設(shè)計基礎(chǔ)-2.3
- 2024年安置房源調(diào)控協(xié)議書模板
- 熱水器維修合同協(xié)議書范本模板
- 空置房客戶關(guān)系維護(hù)協(xié)議書范文
- 貨運車輛維修記錄管理規(guī)范
- 人教版英語八年級下冊 Unit 3 訓(xùn)練案
- 幼兒園大班數(shù)學(xué)一寸蟲教案
- 《電動汽車用動力蓄電池安全要求》報批稿
- 2023中國腎癌診療規(guī)范
- 經(jīng)濟(jì)法概論(第四版) 全套課件 第1-11章 經(jīng)濟(jì)法基本理論- 知識產(chǎn)權(quán)法律制度
- 彩釉珍品工藝
- 蟲媒傳染病防控知識考試題庫(含答案)
- 提高工作中的決策與執(zhí)行能力
- TSAWS 002-2023 涉爆粉塵除塵系統(tǒng)驗收規(guī)范
- 國家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 6-29-02-06 鑿巖工(試行) 2024年版
- 觀文化昌盛延傳承火炬
- 狄金森詩全集
- 誠信在我身邊+高二上學(xué)期誠實守信教育主題班會
評論
0/150
提交評論