陜西西安市愛知2023年中考數學模擬預測題含解析及點睛_第1頁
陜西西安市愛知2023年中考數學模擬預測題含解析及點睛_第2頁
陜西西安市愛知2023年中考數學模擬預測題含解析及點睛_第3頁
陜西西安市愛知2023年中考數學模擬預測題含解析及點睛_第4頁
陜西西安市愛知2023年中考數學模擬預測題含解析及點睛_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.92.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數是()A.40° B.50° C.60° D.140°3.在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為:158,160,154,158,170,則由這組數據得到的結論錯誤的是()A.平均數為160 B.中位數為158 C.眾數為158 D.方差為20.34.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.5.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根6.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°7.已知空氣的單位體積質量是0.001239g/cm3,則用科學記數法表示該數為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm38.如圖,數軸上有三個點A、B、C,若點A、B表示的數互為相反數,則圖中點C對應的數是()A.﹣2 B.0 C.1 D.49.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.310.如圖,立體圖形的俯視圖是A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.12.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關系是_____.(用“<”號填空)13.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數圖象,則當乙車到達A地的時候,甲車與A地的距離為_____千米.14.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.15.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.16.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.三、解答題(共8題,共72分)17.(8分)一名在校大學生利用“互聯網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.求與之間的函數關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?18.(8分)某蔬菜生產基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關閉后,大棚內的溫度y(℃)與時間x(h)之間的函數關系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關閉階段.請根據圖中信息解答下列問題:求這天的溫度y與時間x(0≤x≤24)的函數關系式;求恒溫系統(tǒng)設定的恒定溫度;若大棚內的溫度低于10℃時,蔬菜會受到傷害.問這天內,恒溫系統(tǒng)最多可以關閉多少小時,才能使蔬菜避免受到傷害?19.(8分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.20.(8分)如圖,M是平行四邊形ABCD的對角線上的一點,射線AM與BC交于點F,與DC的延長線交于點H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.21.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(10分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據統(tǒng)計結果繪制如下兩個統(tǒng)計圖(如圖),根據統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數;(3)為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.23.(12分)如果a2+2a-1=0,求代數式的值.24.如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數占總情況數的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數有6種,所以概率為12故選D.考點:列表法與樹狀法.2、A【解析】試題分析:根據直角三角形兩銳角互余求出∠3,再根據兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.3、D【解析】解:A.平均數為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數為158,故中位數為158,正確,故本選項不符合題意;C.數據158出現了2次,次數最多,故眾數為158,正確,故本選項不符合題意;D.這組數據的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數、平均數、中位數及方差,解題的關鍵是掌握它們的定義,難度不大.4、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大?。键c:三視圖.5、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y(tǒng)=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.6、B【解析】

試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B7、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數法—表示較小的數.8、C【解析】【分析】首先確定原點位置,進而可得C點對應的數.【詳解】∵點A、B表示的數互為相反數,AB=6∴原點在線段AB的中點處,點B對應的數為3,點A對應的數為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數是1,故選C.【點睛】本題主要考查了數軸,關鍵是正確確定原點位置.9、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.10、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:根據同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現了方程的思想.12、y3<y1<y1【解析】

根據反比例函數的性質k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數的性質,理解性質:當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關鍵.13、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當相遇后車共行駛了720千米時,甲車到達B地,由此則可求得兩車的速度.再根據甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當甲車到達B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當乙車到達A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數圖象解決實際問題,其關鍵在于正確理解函數圖象橫,縱坐標表示的意義,抓住交點,起點.終點等關鍵點,理解問題的發(fā)展過程,將實際問題抽象為數學問題,從而將這個數學問題變化為解答實際問題.14、【解析】

判斷出即是中心對稱,又是軸對稱圖形的個數,然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.15、【解析】

設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.16、-3【解析】設A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數與反比例函數的交點問題、根與系數的關系、勾股定理、圖象上點的坐標特征等,題目具有一定的代表性,綜合性強,有一定難度.三、解答題(共8題,共72分)17、(1)(2),,144元【解析】

(1)利用待定系數法求解可得關于的函數解析式;(2)根據“總利潤每件的利潤銷售量”可得函數解析式,將其配方成頂點式,利用二次函數的性質進一步求解可得.【詳解】(1)設與的函數解析式為,將、代入,得:,解得:,所以與的函數解析式為;(2)根據題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】本題考查了二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及根據相等關系列出二次函數解析式及二次函數的性質.18、(1)y關于x的函數解析式為;(2)恒溫系統(tǒng)設定恒溫為20°C;(3)恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.【解析】分析:(1)應用待定系數法分段求函數解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當x=5時,y=20∴B坐標為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關于x的函數解析式為:(2)由(1)恒溫系統(tǒng)設定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關閉10小時,蔬菜才能避免受到傷害.點睛:本題為實際應用背景的函數綜合題,考查求得一次函數、反比例函數和常函數關系式.解答時應注意臨界點的應用.19、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據此求得點K(1,).待定系數法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據此得ON=m-1.再證△ONQ∽△HMQ得=.據此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【點睛】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、相似三角形的判定與性質、平行四邊形的判定與性質及勾股定理、三角函數等知識點.20、(1)證明見解析;(2)證明見解析.【解析】

(1)由于AD∥BC,AB∥CD,通過三角形相似,找到分別于,都相等的比,把比例式變形為等積式,問題得證.(2)推出∽,再結合,可證得答案.【詳解】(1)證明:∵四邊形是平行四邊形,∴,,∴,,∴即.(2)∵四邊形是平行四邊形,∴,又∵,∴即,又∵,∴∽,∴,∵,∴,∵,∴.【點睛】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據二次函數的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論