2022-2023學年江西省上饒市第六中學中考數(shù)學模擬預測題含解析_第1頁
2022-2023學年江西省上饒市第六中學中考數(shù)學模擬預測題含解析_第2頁
2022-2023學年江西省上饒市第六中學中考數(shù)學模擬預測題含解析_第3頁
2022-2023學年江西省上饒市第六中學中考數(shù)學模擬預測題含解析_第4頁
2022-2023學年江西省上饒市第六中學中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.2.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.數(shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.數(shù)據(jù)A的波動小一些3.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)4.實數(shù)在數(shù)軸上的點的位置如圖所示,則下列不等關(guān)系正確的是()A.a(chǎn)+b>0 B.a(chǎn)-b<0 C.<0 D.>5.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠06.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm7.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.8.如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),則圖中點C對應(yīng)的數(shù)是()A.﹣2 B.0 C.1 D.49.化簡的結(jié)果是()A.±4 B.4 C.2 D.±210.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份二、填空題(本大題共6個小題,每小題3分,共18分)11.若正多邊形的一個內(nèi)角等于140°,則這個正多邊形的邊數(shù)是_______.12.在直角坐標系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側(cè)部分是_____的(填“上升”或“下降”)13.如圖,在矩形ABCD中,順次連接矩形四邊的中點得到四邊形EFGH.若AB=8,AD=6,則四邊形EFGH的周長等于__________.14.如圖所示,D、E之間要挖建一條直線隧道,為計算隧道長度,工程人員在線段AD和AE上選擇了測量點B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計算可得DE長為_____.15.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.16.如圖,點是反比例函數(shù)圖像上的兩點(點在點左側(cè)),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.三、解答題(共8題,共72分)17.(8分)解不等式組:,并將它的解集在數(shù)軸上表示出來.18.(8分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設(shè)BD為xcm,CE為ycm.小聰根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小聰?shù)奶骄窟^程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關(guān)數(shù)值保留一位小數(shù)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.19.(8分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條弧.(1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).20.(8分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.21.(8分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.22.(10分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.23.(12分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.24.已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側(cè),則對角線的最小值是.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.2、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.3、C【解析】

試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!4、C【解析】

根據(jù)點在數(shù)軸上的位置,可得a,b的關(guān)系,根據(jù)有理數(shù)的運算,可得答案.【詳解】解:由數(shù)軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數(shù)與數(shù)軸,利用點在數(shù)軸上的位置得出b<-1,0<a<1是解題關(guān)鍵,又利用了有理數(shù)的運算.5、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.6、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關(guān)于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.【點睛】本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.7、C【解析】試題分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結(jié)合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.8、C【解析】【分析】首先確定原點位置,進而可得C點對應(yīng)的數(shù).【詳解】∵點A、B表示的數(shù)互為相反數(shù),AB=6∴原點在線段AB的中點處,點B對應(yīng)的數(shù)為3,點A對應(yīng)的數(shù)為-3,又∵BC=2,點C在點B的左邊,∴點C對應(yīng)的數(shù)是1,故選C.【點睛】本題主要考查了數(shù)軸,關(guān)鍵是正確確定原點位置.9、B【解析】

根據(jù)算術(shù)平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術(shù)平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根,正數(shù)a有一個正的算術(shù)平方根,0的算術(shù)平方根是0,負數(shù)沒有算術(shù)平方根.10、B【解析】

解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題分析:此題主要考查了多邊形的外角與內(nèi)角,做此類題目,首先求出正多邊形的外角度數(shù),再利用外角和定理求出求邊數(shù).首先根據(jù)求出外角度數(shù),再利用外角和定理求出邊數(shù).∵正多邊形的一個內(nèi)角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內(nèi)角與外角.12、下降【解析】

根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側(cè)部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側(cè)部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結(jié)論.13、20.【解析】分析:連接AC,BD,根據(jù)勾股定理求出BD,根據(jù)三角形中位線定理,菱形的判定定理得到四邊形EHGF為菱形,根據(jù)菱形的性質(zhì)計算.解答:連接AC,BD在Rt△ABD中,BD=∵四邊形ABCD是矩形,∴AC=BD=10,∵E、H分別是AB、AD的中點,∴EH∥BD,EF=BD=5,同理,F(xiàn)G∥BD,FG=BD=5,GH∥AC,GH=AC=5,∴四邊形EHGF為菱形,∴四邊形EFGH的周長=5×4=20,故答案為20.點睛:本題考查了中點四邊形,掌握三角形的中位線定理、菱形的判定定理是解答本題的關(guān)鍵.14、1.【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.15、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質(zhì).16、【解析】

過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運用相似三角形的判定定理和性質(zhì)定理.三、解答題(共8題,共72分)17、-1≤x<4,在數(shù)軸上表示見解析.【解析】試題分析:分別求出各不等式的解集,再求出其公共解集,并在數(shù)軸上表示出來即可.試題解析:,由①得,x<4;由②得,x??1.故不等式組的解集為:?1?x<4.在數(shù)軸上表示為:18、(1)1.1;(2)見解析;(3).【解析】

(1)(2)需要認真按題目要求測量,描點作圖;(3)線段BD是線段CE長的2倍的條件可以轉(zhuǎn)化為一次函數(shù)圖象,通過數(shù)形結(jié)合解決問題.【詳解】根據(jù)題意測量約故應(yīng)填:根據(jù)題意畫圖:當線段BD是線段CE長的2倍時,得到圖象,該圖象與中圖象的交點即為所求情況,測量得BD長約.故答案為(1)1.1;(2)見解析;(3)1.7.【點睛】本題考查函數(shù)作圖和函數(shù)圖象實際意義的理解,在中,考查學生由數(shù)量關(guān)系得到函數(shù)關(guān)系的轉(zhuǎn)化思想.19、(1)π,2π;(2)(n﹣2)π.【解析】

(1)利用弧長公式和三角形和四邊形的內(nèi)角和公式代入計算;(2)利用多邊形的內(nèi)角和公式和弧長公式計算.【詳解】(1)利用弧長公式可得=π,因為n1+n2+n3=180°.同理,四邊形的==2π,因為四邊形的內(nèi)角和為360度;(2)n條?。剑?n﹣2)π.【點睛】本題考查了多邊形的內(nèi)角和定理以及扇形的面積公式和弧長的計算公式,理解公式是關(guān)鍵.20、證明見解析【解析】分析:根據(jù)平行四邊形的性質(zhì)以及已知的條件得出△EGD和△FHB全等,從而得出DG=BH,從而說明AG和CH平行且相等,得出四邊形AHCG為平行四邊形,從而得出答案.詳解:證明:在?ABCD中,,,又

,≌,,,又,四邊形AGCH為平行四邊形,.點睛:本題主要考查的是平行四邊形的性質(zhì)以及判定定理,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是根據(jù)平行四邊形的性質(zhì)得出四邊形AHCG為平行四邊形.21、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質(zhì)和菱形的性質(zhì)即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質(zhì)和面積;2.平行四邊形的性質(zhì);3.解直角三角形.22、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結(jié)論;(2)設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設(shè)點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.23、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論