版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高等數(shù)學(xué)第六版(上冊)第四至七章課后習(xí)題答案習(xí)題41求下列不定積分:(1)1dx;x2解1dxx2dx1x21C1C.(2)
x2xdx; 3
21
x31 2解x
xdxx2dx
x2312
Cx5
xC.x(3)1dx;x1
1 1x解 dxx
2dx
x212
C
xC.x23xdx; 7
1 73解x23xdxx3dx
x3713
C10
x33xC.1 dx;x2x1
1 53 1x2x解 dxx2x
2dx
x2C
C.2
2xx(6)(6)mxndx;m nm
1 n
m mn解mxndxxmdx
xmn1m
C
nmx
C.(7)5x3dx;4解5x3dx5x3dx5x4C.4(8)(x23x2)dx;解(x23x2)dxx2dx3xdx2dx1x33x22xC.3 22gh(9)2gh
(g是常數(shù));2hgdh 1 1 12hg2gh解 2gh2g
2dh2h2C2g
C.(10)(x2)2dx;3解(x2)2dx(x24x4)dxx2dx4xdx4dx1x32x24xC.3(11)(x21)2dx;解(x21)2dx(x42x21)dxx4dx2x2dxdx1x52x3xC.5 3x3(12)(x;x3 1 3解(
x
x31)dx(x2x
x3x2dxx2dxx2dxdx1x323 3
x22353
5x2xC.(13)
x)2
xdx;x(1x)2
12xx
1 1
1 43 25xx解 dxxx3x43x21
dx(x
22x2x2)dx2x23
x25
x2C.(14)
x213x43x21
dx;2 1 3解x21x2
dx(3x
)dxx21
arctanxC.(15)1x2dxx2
x211 1解1x2dx
1x
dx(11x2)dxxarctanxC.(16)(2ex3)dx;x解(2ex3)dx2exdx31dx2ex3ln|x|C.x x(17)(
3 1x211x2
2 )dx;解(32 )dx31dx21 dx3arctanx2arcsinxC.1x21x21x1x21x2ex
exxx e x e 解e(ex
1 12)dxex2x2C.3xexdx;xx
3xex解3
edx(3e)
dx C C.ln31(20)
23x523x23x52
dx;2x
(2)x3
5 2x解 3x dx[25(3
]dx2x
2C2xlnln3ln
(ln33
C.secx(secxtanx)dx;解secx(secxtanx)dx(sec2xsecxtanx)dxtanxsecxC.cos2xdx;2解cos2xdx1cosxdx1(1cosx)dx1(xsinx)C.2 2 2 2(23) 1 dx;1cos2x解1 dx1 dx1tanxC.1cos
2cos2x 2 cos2x dxcosxsinxcos2x
cos2xsin2x解cosxsinxdx
cosxsin
dx(cosxsinx)dxsinxcosxC. cos2x dx;cos2xsin2x 解 cos2x dx cos2xsin2x
cos2xsin2cos2xsin2x
dx
1sin
1xcos2
)dxcotxtanxC.x(26)(11)xx2
xdx;? 1
3 5
47 12解 ?1 ?2? x?
xdx(x4x
4)dx
x47
4C.一曲線通過點(e2,3),且在任一點處的切線的斜率等于該點橫坐標(biāo)的倒數(shù),求該曲線的方程.解設(shè)該曲線的方程為yf(x),則由題意得yf(x)1,x所以 y1dxln|x|C.x又因為曲線通過點(e2,3),所以有3213f(e2)ln|e2|C2C,C321.于是所求曲線的方程為yln|x|1.一物體由靜止開始運動,經(jīng)t3t2(m/s),問3秒后物體離開出發(fā)點的距離是多少?360m需要多少時間?解設(shè)位移函數(shù)為ss(t),則sv3t2,
s3t2dtt3C.因為當(dāng)t0時s0,所以C0.因此位移函數(shù)為st3.(1)3秒后物體離開出發(fā)點的距離是ss(3)3327.(2)由t3360,得物體走完360m所需的時間t33607.11s.
1e22
,ex
shx和
chx
exchx
的原函數(shù).ex證明 chxshx
exexexexe
exe
e2x.2 2因為(1e2x)e2x,2所以12
e2x
exchx
的原函數(shù).因為(exx
shx)ex
shx
chx
x(shxchx)ex
exe(2
exe2
)e2x,所以e
shx
chx
的原函數(shù).因為x x x x
xexe
exex 2x(echx)echxeshxx ex
(chxshx)e( 2
)e ,2所以e
chx
chx
的原函數(shù).習(xí)題42在下列各式等號右端的空白處填入適當(dāng)?shù)南禂?shù)使等式成立(例如dx1d(4x7:4(1)dxd(ax);
1d(ax).a(2)dx d(7x3);
1d(7x3).7(3)xdx d(x2);解xdx
1d(x2).2(4)xdx d(5x2);解xdx(5)xdx
1 d(5x2).10d(1x2);解xdx12
d(1x2).(6)x3dx d(3x42);解x3dx
1 d(3x42).12e2xdx d(e2x);解e2x
1d(e2x).2e
x2dx
d
x2);x解e2dx2d(1e
x2).sin3xdx3 3
d(cos32
x);解sin xdx
d(cos
x).2dxx
3 2d(5ln|x|);解dx1x
d(5ln|x|).dxx
d(35ln|x|);解dx1
d(35ln|x|).
x 5dx
d(arctan3x);19x2解 dx 19x2 3
d(arctan3x).11x2
dx
d(1arctanx);1x1x2
(1)d(1arctanx).11x2
xdx
d(1x2).1x21x2
(1)d(
1x2).求下列不定積分(ab,,均為常數(shù)):(1)e5tdt;解e5tdt1e5xd5x1e5xC.5 5(2)(32x)3dx;解(32x)3dx1(32x)3d(32x)1(32x)4C.2 8(3)1dx;12x解1dx11d2x)1ln|12x|C.(4)
12x323323x
212x 2323x解323x
13
(23x)
1 13d(23x)32
2(23x)3C
1(23x)3C.222x(5)(sinaxeb)dx;x解 (sinaxeb)dx1xa
sin(ax)bebd(
)a
xxbcosaxbebC.xb(6)(6)sintdt;t解sintdt2sintdttan10xsec2xdx;
t2cos
tC. 解 tan10xsec2xdxtan10xdtanx1tan11x 11 dx ;xlnxlnlnx解dx 1 dlnx1dlnlnxln|lnlnx|C.xlnxlnln
lnxlnln
lnlnx1x21x2tan 1x21x2解tan
dxtan d d1x21x211x21x21x2sin1x2cos1x21x21x2 x 1x21x21x21x2 dx ;sinxcosx
ln|
|C.dx sec2x 1解sinxcosx
tanxdxtanxdtanxln|tanx|C.1 dx;exex1 ex
1 x x解exexdxe2x1dx1e2xde
arctan
C.xex2dx;解xex2dx1ex2d(x2)1ex2C.2 2xcos(x2)dx;解xcos(x2dx1cos(x2d(x2)1sin(x2)C.2 223x2x23x223x2解23x23x3
dx16
(23x2)
12d(23x2)
1(23x2)2C113 1
23x2C.(15)1x4dx;3x3 3
4 3 4解1x4dx41x4d
)ln|1x4
|C.(16)cos2(t)sin(t)dt;解cos2)sin(t)dt1cos2)d)1cos3)C. sinxdx;cos3x解sinxdxcos3xdcosx1cos2xC1sec2xC.cos3x 2 2sinxcosxdx;3sinxcosx3sinxcosx3sinxcosx解sinxcosxdx3sinxcosx3sinxcosx(sinxcos94x2(19)1x94x2
13d(sinxcosx)
(sinxcosx)3C.22294x294x294x2解x dx94x294x294x211 d(2x)11 d(94x2)1arcsin2x
94x94x21(2x)2391(2x)2394x2x3x(20)9x2dx;x3 1 x2 2
9 2 1 2 2解9x2dx29x2d(x
)2(19x2)d
)[x2
9ln(9x
)]C.(21)1 dx;2x21解1 dx1 dx1(1 1 )dx12x12x21 (2x2x2 2x1 2x112x1222x11222x1
d(2x1)1
d(2x1)1ln|22
2x1|122
22ln|22
2x1|C122
ln|
2x1|C.2x1(22) 1 dx(x1)(x2)解1 dx1(11)dx1(ln|x2|ln|x1|C1ln|x2|C.(x1)(x(23)cos3xdx;
3 x
x1 3
3 x13解cos3xdxcos2xdsinx(1sin2x)dsinxsinx1sin3xC.3(24)cos2(t)dt;解cos2(t)dt1[1cos2(t)]dt1t1sin2(t)C.2sin2xcos3xdx;
2 解sin2xcos3xdx1(sin5xsinx)dx1cos5x1cosxC.2cosxcosxdx;2
10 2解cosxcosxdx1(cos3xcos1x)dx1sin3xsin1xC.2 2 2 2 3 2 2sin5xsin7xdx;解sin5xsin7xdx1(cos12xcos2x)dx1sin12x1sin2xC.2 24 4tan3xsecxdx;解tan3xsecxdxtan2xsecxtanxdxtan2xdsecx(sec2x1)dsecx1sec3xsecxC.3(29)
102arccosx
11x2102arccosx11x2
dx10
2arccos
darccosx2
10
2arccos
d(2arccosx)
102arccos2ln10
C.nx(30)nxx(1x)
dx;nx解 nxx(1x)
dx2arctanxd(1x)
x2arctan
xdarctan
x(arctan
x)2C.1x2(31)dx 1x2(arcsinx)21(arcsinx)21x2
1(arcsinx)
darcsinx
1arcsin
C.1lnxdx;(xlnx)2解1lnxdx1 d(xlnx)1C.(xlnx)2lntanxdx;cosxsinx
(xlnx)2
xlnx解lntanxdxlntanxsec2xdxlntanxdtanxcosxsin
tan
tanxlntanxdlntanx1(lntanx)2C.2a2a2x22
dx(a>0);x2 令xasina2xa2x2
a2sin2acost
acostdta
sin
tdta
1cos2
dt,1a2
2t242
sin2tCa222
arcsinxxa2xa2x2
C.x2(35)x2x解dx 令xsect1 secttantdtdttCarccos1C.x21x sectx21或 dx 1 dx1 d1arccos1C.x2111x21x2111x211x2(x21)3(36)(x21)3(x21)3(tan2t1)3x21解dx 令xtant1 dtantcostdt(x21)3(tan2t1)3x21(37)
dx;x2x29x299sec2tx299sec2t93sect解 dx x
d(3sect)3tan
tdt3(
1cos2
3tant3tC
x293arccos3C.x2x(38)dx 12x2x解dx 令2xt1tdt(11)dttln(1t)C2x
2x
2x)C.11x2(39)1x21
1t
1t解dx 令xsint1 costdt(11 )dt(11sec2t)dt1x2111x211x2
1cost 2 2ttantCt2
sint1cost
Carcsinx
x C.1x2(40)1x2x解dx 令xsint1 costdt1costsintcostsintdt1x2x sint1x2
2 sintcost1dt11 d(sintcost)1t1ln|sintcost|C1x22 2sint1x21arcsinx1
x|C.2 2習(xí)題43求下列不定積分:xsinxdx;解xsinxdxxdcosxxcosxcosxdxxcosxsinxC.lnxdx;解lnxdxxlnxxdlnxxlnxdxxlnxxC.arcsinxdx;解arcsinxdxxarcsinxxdarcsinx1x2xarcsinx1x21x2xarcsin1x2xexdx;
C.解xexdxxdexxexexdxxexexCex(x1)C.x2lnxdx;解x2lnxdx1lnxdx31x3lnx1x3dlnx3 3 31x3lnx1x2dx1x3lnx1x3C.3 3 3 9excosxdx;解因為excosxdxexdsinxexsinxsinxdexexsinxexsinxdxexsinxexdcosxexsinxexcosxcosxdexexsinxexcosxexcosxdx,所以 excosxdx1(exsinxexcosx)C1ex(sinxcosx)C.2 2e2xsinxdx;2解因為e2xsinxdx2e2xdcosx2e2xcosx2cosxde2x2 2 2 22e2xcosx4e2xcosxdx2e2xcosx8e2xdsinx2 2 2 22e2xcosx8e2xsinx8sinxde2x2 2 22e2xcosx8e2xsinx16e2xsinxdx,2 2 2所以 e2xsinxdx2e2x(cosx4sinx)C.2 17 2 2xcosxdx;2解xcosxdx2xdsinx2xsinx2sinxdx2xsinx4cosxC.2 2 2 2 2 2x2arctanxdx;解x2arctanxdx1arctanxdx31x3arctanx1x31dx3 3 3 1x221x3arctanx1x dx21x3arctanx1(11)dx223 61x2 3
6 1x21x3arctanx1x21ln(1x2)C.3 6 6xtan2xdx2解xtan2xdxx(sec2x1)dxxsec2xdxxdx1x2xdtanx21x2xtanxtanxdx1x2xtanxln|cosx|C.2 2x2cosxdx;解x2cosxdxx2dsinxx2sinxsinx2xdxx2sinx2xdcosx解
x2sinx2xcosx2cosxdxx2sinx2xcosx2sinxC.te2tdt;te2tdt1tde2t1te2t1e2tdt2 2 21te2t1e2tC1e2t(t1)C.2 4 2 2ln2xdx;x解ln2xdxxln2xx2lnx1dxxln2x2lnxdxxxln2x2xlnx2x1dxxln2x2xlnx2xC.x解
xsinxcosxdx;xsinxcosxdx1xsin2xdx1xdcos2x1xcos2x1cos2xdx2 4 4 41xcos2x1sin2xC.4 8x2cos2xdx;2解x2cos2xdx1x2(1cosx)dx1x31x2dsinx1x31x2sinxxsinxdx2 2 6 2 6 21x31x2sinxxdcosx1x31x2sinxxcosxcosxdx6 2 6 21x31x2sinxxcosxsinxC.6 2解
xln(x1)dx;xln(x1ln(x21x2ln(x1x21dx2 2 2 x11x2ln(x1)1(x11)dx2 2 x11x2ln(x1)1x21x1ln(x1)C.2 4 2 217.(x21)sin2xdx;解(x21)sin2xdx1(x21)dcos2x1(x21)cos2x1cos2x2xdx2 2 21(x21)cos2x1xdsin2x2 21(x21)cos2x1xsin2x1sin2xdx2 2 21(x21)cos2x1xsin2x1cos2xC.18.
2ln3x2
2 4dx;ln3x 3 1 1 3 1 3 1 3 1 2解 x2dxln
xd x x
xxd
xlnx
x3x2
xdx1ln3x3ln2xd11ln3x3ln2x31dln2xx x x x x1ln3x3ln2x61ln1ln3x3ln2x6lnxd1x x x2 x x x1ln3x3ln2x6lnx61dxx x x x21ln3x3ln2x6lnx6C.x x x xe3xdx;3x xt3x xt 2t 2 解e dx 3tedt3tde3t2et6tetdt3t2et6tdet3t2et6tet6etdt3t2et6tet6etC33ex(3x223x2)C.coslnxdx;解因為xcoslnxdxxcoslnxxsinlnx1dxxxxcoslnxsinlnxdxxcoslnxxsinlnxxcoslnx1dxx所以解
xcoslnxxsinlnxcoslnxdx,coslnxdxx(coslnxsinlnx)C.2(arcsinx)2dx;1x2(arcsinx)2dxx(arcsinx)2x2arcsinx1x21x2x(arcsinx)21x21x2x(arcsinx)1x2
arcsinx2dx11x2
x(arcsinx)2exsin2xdx.
arcsinx2xC.解exsin2xdx1ex(1cos2x)dx1ex1excos2xdx,2 2 2而 excos2xdxcos2xdexexcos2x2exsin2xdxexcos2x2sin2xdexexcos2x2exsin2x4excos2xdx,excos2xdx1ex(cos2x2sin2x)C,5所以 exsin2xdx1ex1ex(cos2x2sin2x)C.2 10習(xí)題44求下列不定積分:x31.x3dx;x3x解x3dx
x327x3
dx
(x3)(x23x9)27x3 dx (x23x9)dx27 x31x33x29x27ln|x3|C.3 22. 2x3 dx;x23x10解2x3 dx1 d(x23x10)ln|x23x10|C.x23x10 x23x10x5x483.
x3
dx;x5x48解x3x
dx(x2
x
x2x8x3xdx1x31x2x8dx4dx3dx3 2
x
x11x31x2x8ln|x|4ln|x1|3ln|x1|C.3 24. 3dx;x31解3dx(1x2)dx(112x131 )dxx31
x
x2x
x
2x2x1
2x2x1ln|x1|11 d(x2x31 d(x1)32x2x13
2(x
1)2( )2 22 2x2x2x1
|x
3arctan2x1C.35. xdx (x1)(x2)(x3)3解xdx 1(413)dx(x1)(x2)(x3)2 x2 x1x31(ln|x2|3ln|x3|ln|x1|)C.2x216. (x1)2(xdx;x21解 2
dx[11
11
12]dx(x(x
2x1
2x1
(x1)1ln|x1|1ln|x1|1C2 2 x11ln|x227. 1 dx;x(x21)
1x
C.解1 dx(1x)dxln|x|1x2)C.x(x2x1x2 2 dx ;(x21)(x2x)解dx (11x111)dx(x21)(x2x) x2x212x1ln|x|1ln|x1|1x1dx2 2x21ln|x|1ln|x1|12xdx11dx2 4x21 2x21ln|x|1ln|x1|1ln(x21)1arctanxC.2 4 2 dx ;(x21)(x2x1)解dx (x1x)dx(x21)(x2xx2x1x2112x111 dx1ln(x22x2x12x2x1 21ln|x2x1|1ln(x211 dx2 2 2x2x11ln|x2x1|1ln(x21)3arctan2x1C.2 2 3 310. 1dx;x41解 1dx1 dxx41 (x22x1)(x22x2x1
2x1 4x2
22x
dx dx4 2x22x11(2x2)2 1(2x4 2x22x122 2dx22 2dx4 x2
2x
4 x2
2x12[d(x2
2xd(x2
2x1)]1(dx dx )8 x22x22x22x1x22x1
2x
x222
2x
4 x222
2x
x2
2x1ln|8
| 4
2x
arctan(4
2x1)C.x22(x2x1)2dx;x22 x1解(x2x1)2dx(x2x1)2dxx2x1dx12x1 dx31 dx1 dx2(x2x1)2
2(x2x1)2
x2x111 31 dx1 dx,2x2x因為
2(x2x1)2
x2x11 dx21 d(2x1)2arctan(2x1),x2x
31(2x1)2 3 3 33而 1 dx1 dx3(x2x1)23由遞推公式
[(x
1)2(2
)2]22dx 1 [ x (2n3)dx ],(x2a2
2a2(n
(x2a2)n1
(x2a2)n1得 1 dx1 dx3(x2x3
x
[(x
1)2(2
)2]223331 ( 2dx )12x122arctan2x1,3332( )22
x2x
x2x
3x2x13x22
1 1
2x1
2x1
2x1所以 (x2x1)2dx2x2x12x2x1
arctan3
arctan C3 3 3 x1 x2x1
arctan2x1C3 312.
dx ;3sin2x解 dx 3sin2x
14cos2x
dx
12334tan2x3233
dtanx1 14tan2x(
32
dtanx
arctan2tanxC.13. 1 dx;3cosx1 1 dx
xd()2解3cosxdx2 x x x1cos2 cos2(1sec2)dtanx
2 2 2tanx222tan2x22
arctan
2C.2令utanx 或 1 dx 3cosx
132u1u
2 du1u2
tanx1 du1arctanuC1arctan 2C.222u2(2)2 222214. 1 dx;2sinx1 dx
xd()2解2sinxdx x x x x x22sincos sin2(csc2cot)2 2 2 2 2d(cotx)
d(cot
x1)2 22 cot2xcotx1
(cotx1)2(
3)223
2arctan
22cotx123
22 2C.令utanx 或 1 dx 2sinx
122u1u
2 du1u21 du1 du3u2u13
(u
1)2( )22 22arctan2u1C3 3
3
2tanx23
C. dx ;1sinxcosxdx 1
xd(tan)2 x解1sinx
cos
2
cos2x(1tan2
x)2
1
xln|tan2|C.2令utanx 或 dx 1sinxcosx1
12u1u2
2 du1u21u2 1u21duln|u1|Cln|tanx1|C.u1 2 dx ;2sinxcosx5令utanx 解 dx 2sinxcosx
4u1u
11u1u
21u5
du
1 du3u22u23tanx111 du1arctan1C1arctan 2 C.5553(u1)2(5553
5)2 53令utanx 或 dx 2sinxcosx5
4u1u
11u1u
2 du1u251 du11 du522u5
3(u
1)2( )23 31arctan3u1C5 5
1arctan5
3tanx125
C.13x117.13x1令3x1令3x113x1
13u1u
2du3(u11)du1u3u23u3ln|1u|C33(x1)233x13ln(13x1)C.2 2(x)(x)31x1
dx;(x)31x1(x)31x1
x)2
x1]dx12
x223
3x2xC.x19.x1xx1 解 x11dx令x1uu12udu2(x1 u1
2u
)du2(1u2
2u2ln|u1|)C(x4x4x20.x4x
x14ln(
x11)C.解 dxx4x
令xu
1 u2u
3du4(u11)du2u24u4ln|1u|C1u2x4x4ln(14x)C.21.
1xdx;1xx解令1x1x
1u2u,則x 1u2
dx
4u(1u2)
du,1x1x dxu1u24u du2(1x1xx 1u
(1u2)
u2
1u21x1xln|u1|1x1xln|
1x1x
1x|2arctan1x
C.3(x23(x2(x4x1解令3 u,則xx1
u3,u3
dx
6u2(u32
,代入得3(x3(x2(x4
32
du
3uC2
3 x13 C.2 x1總習(xí)題四求下列不定積分(其中a,b為常數(shù)):dx ;exex1dx e1
1 x
ex1解exexe2x1dxe2x
ln|2 ex
|C. x dx;(1x)3 解 x dx (1x)3x2
1(x
dx
1(x
dx
1x
12
1x)
C.3.a6x6dx(a>0);x2 1 1 3 1 x3a3解a6x6dx3(a32(x32d(x
) ln| |C.6a3 x3a31cosxdx;xsinx解1cosxdx1 d(xsinx)ln|xsinx|C.xsinxlnlnxdxx
xsinx解lnlnxdxlnlnxdlnxlnxlnlnxlnx11dxlnxlnlnxlnxC.xsinxcosxdx;1sin4x
lnxx 解 sinxcosxdx 1sin4xtan4xdx;
sinx1sin4x
dsinx2
11(sin2x)2
d(sin2x)1arctansin2xC.2解tan4
4sinx xdxcos2xdtanxsinx
xsin2
xdtanx tan4xtan2x1
dtanx(tan2x11 )dtanxtan2x11tan3xtanxarctantanxc1tan3xtanxxc.3 3sinxsin2xsin3xdx;2解sinxsin2xsin3xdx1(cos3xcosx)sin3xdx21cos3xsin3xdx1cosxsin3xdx2 21cos3xd(cos3x)1(sin4xsin2x)dx6 41cos23x1cos4x1cos2xC.12 16 8 dx ;x(x64)dx 1 1 x5 1 1 6解x(x64)4xx64)dx4ln|x|24ln(x
4)C.10.解
axdx(a0);axa2x2a2x2a2x2 axdxa2x2a2x2a2x2 a2x2a2x2ax)x)
C.x)1(x)2解dxx)1(x)2
x2ln(
x1(
x)2)C2ln(
x1x)C.12.解
xcos2xdx;xcos2xdx1(xxcos2x)dx1x21xdsin2x2 4 41x21xsin2x1sin2xdx1x21xsin2x1cos2xC.4 4 4 4 4 813.eaxcosbxdx;解因為eaxcosbxdx1cosbxdeax1eaxcosbxbeaxsinbxdxa1ax b
aax 1
ab
b2 axae cosbxa2sin
e cosbx a a2
sinbxa2
cosbxdx,ax a2 1
b ax所以
cosbxdx (a2b2a
cosbx a2
sinbx)C 1a2b2
eax(acosbxbsinbx)C.1ex14.1exdx 令1dx 令1exu1ex
dln(uu
1)
1u2
du(
1u1
1u
)du.ln|
uu
|cln
c. ex ex1ex1x2x2解dx 令xsect1 secttantdtcostdtsintCx21x2 sec2tx21xx21x16.
dx ;(a2x2)5/2解 dx(a2x2)5/
令xasint 1 acostdt(acost)511 dt1(tan2ttanta413a4
cos4ttan3t1a4
a4tantC(a2x2(a2x2)3a4a2x23a4
C.1x217.1x2x41x2解dx 令xtant1 1x2x4cos3t
cos2
tan4tsectsin4tdtsin4tdsint(
1sin4
1sin2
)dsint
13sin3
1Csintx2)33x3
C.11x218.
x
xdx;解xsin
令xt2xdx tsint2tdt2tsintdt22t2dcost2t2cost2cost2tdt2t2cost4tdsint2t2cost4tsint4sintdt2t2cost4tsint4costC2xcos
x
x
x4cos
xC.19.解
ln(1x2)dx;ln(1x2)dxxln(1x2)x
2xdx1x2xln(1x2)2(1
11x
)dxxln(1x2)2x2arctanxC.sin2xcos3xdx;sin2x
sin2x
tanx解cos3xdxcosxdtanx(tanxtan2x1)dtanx1tan2x1ln(tan2x1)C.2 2arctanxdx;解arctan
xdxxarctan
xx1dx1xxx
x(11)dx1xxxarctanx
xarctan
xC
(x1cosxdxsinx
xxC.2cosx cot|解1cosxdx2dx cot|
xxcscd
2ln|cscx xC.sinxx3x23.(1x8)2dx;
2sin
xcosx2 2
2 2 2 23解 x dx1382 4
1 482dx4
11[x
arctanx88
]C.x)
x
421x提示:已知遞推公式dx 1 [ x (2n3)dx ].(x2a2x11
2a2(n
(x2a2)n1
(x2a2)n124.x83x42dx;x11 1 x
4令x4t1 t2解x83x42dx4x83x42dx1(13t2)dt1(141)dt
4t23t2dt4 t23t
4 t
t11tln|t2|1ln|t1|C41x44
ln
44x41x4x41
C.25. dx;16x4解dx1 dx1(1 1 )dx16x4 (4x2)(4x2) 8 4x2 4x21(184
ln|
2x2x
12
x)C21ln|2x|1arctanxC.32 2x 16 226.解
sinxdx;1sinx sinxdx 1sinx
sinx(1sin1sin2x
dx
sinxsin2dxcos2x(sinx11 )dxsecxxtanxC.27.
cos2xxsinxdx1cosx
cos2x解xsinxdxxsinxdx1x dx1sinxdx1cos
2cos2x2
2cos2x2
2cos2x2xdtanxtanxdx2 2xtanxtanxdxtanxdxxtanxC.2 2 2 228.e
sinxxcos3xsinxcos2x
dx;解e
sinxxcos3xsincos2x
dx
sin
cosxdxe
sin
tanxsecxdxxesinxdsinxesinxdsecxxdesinxsecxesinxsecxdesinxxesinxesinxdxsecxesinxsecxesinxcosxdxxesinxsecxesinxC.3xx3xx(x3x)
dx;3xx(x3xx(x3x)
令xt6
t
t2(t3t2
6t)
5dt6(1t
1t
)dt6ln
tt
Cln
x C.(6x1)6(6x1)6(1ex)2dx 1ext1
1 1 12解2ex)2
t2t1dt(t1t
)dtln(t1)lnt1Ctxln(1ex)e3xex
11e
C.31.e4xe2x1dxe3xex
exex
1 x x解e4xe2x1dxe2x1e2xdx1(exex)2d(ee )arctan(exex)Carctan(2shx)C.xex32. (ex2dx;xex x x 1解(ex2dx(ex2d(e
1)xdex1x1dxx1 dexex1
ex
ex
ex(ex1)x(11)dexex1 ex ex1 xex1
lnexln(ex1)Cxexex1
lnex
1)C.33.ln2(x
1x2)dx;ln2(x
1x2)dxxln2(x
1x2)x[ln2(x
1x2)]dxxln2(x
1x2)2ln(x
1x2)x dx1x2xln21x2
1x2)2ln(x
1x21x211x21x21x2xln2(xxln2(x
1x2)1x2)
ln(xln(x
1x2)21x2)2
[ln(x
1x2)]dx1x2xln2(1x2
1x2)2
ln(x
1x2)2xC.1x234. lnx1x2(1x2)3/2解因為 1 dx令xtanx2
1sec3t
sec2tdtcostdtsintC
x C1x2所以 lnx dxlnxd( x )xlnxx 1x21x21x21x21x21x21x21x21x2
ln(x
1x2)C.11x2
arcsinxdx;1x22解 arcsinxdx令xsinttcos2tdt1(ttcos21x221t21tsin2t1t21tsin2t1sin2tdt4 4 4 4 41t21tsin2t1cos2tC4 4 81x21(arcsinx)21x arcsinx1x21x236.
41x2x31x2
2 4 1dx;x3arccos11x2
dxx
arccosx x dxx 1x2
arccosxd1x21x2x2
arccosx1x211x21x2
(x2arccosx)dx1x21x21x2(2xarccosxx1x21x21x1x2
arccosx2
arccosxdxx2dx1x1x2
arccosx1x32arccosxd1x1x2x2)3x2
arccosx1x3
arccosx2(1x2)dx1x1x2x2)3x2
arccosx1x32(1x2)3arccosx2x2x3C1x23 3 31x213
1x2(x21)arccosx1x(x26)C.9cotxdx;1sinx解 cotx1sinx
dx
1sinx(1sin
dsinx(
1sin
11sinx
)dsinxln|sinx|ln|1sinx|Cln|cscx1|C. dx ;sin3xcosx解 dxsin3xcos
1sinxcos
dcotx
cosxsinxcos2
dcotxcot
1cos2
dcotx
(1cot
cotx)dcotxln|cotx|1cot2xCln|tanx|2
12sin2
C1. dx (2cosx)sinx解令utanx,則2dx 1 2du
1u2du(2cosx)sinx
(2
1u1u
)2u1u
1u
(u23)u1
du11du1ln(u23)1ln|u|C3u23 3u 3 31ln|tan3x3tanx|C.3 2 2sinxcosxdx;sinxcosxsinxcosx
(sinxcosx)sinxcos
sin2xcosx cos2xsinx解sinxcosxdx
sinx2cos2
du2sin2x1dx2cos2x1dx sin2x2sin2x
dsinx
cos2x2cos2x
dcosx1(12
12sin2x
)dsinx12
12cos2x
)dcosx1sinx
ln|
2sinx1|1cosx
cosx1|C2 2 2sinx1 2 2 2cosx11(sinxcosx)2
2
sinx1|C2cosx1習(xí)題51利用定積分定義計算由拋物線y=x21,兩直線x=a、x=b(b>a)及橫軸所圍成的圖形的面積.:在區(qū)間[a,b]n1
abai(i1,2,,n1),把區(qū)間[a,b]分n成n個長度相等的小區(qū)間,各個小區(qū)間的長度為:
xi
ba(i1,2,,n).n第二步:在第i個小區(qū)間[xi1,xi](i1,2,,n)上取右端點i
abai,作和nn S f)x
[(abai)21]bani1
i ii1 n nbn
n[ai1
2a(ba)in
(ba)n2
i21](bn
[na
2a(ba)n
n(n2
(ba)n2
n(n1)(2n6
n](ba)[a
a(ba)(nn
(ba)2(n1)(2n6n2
1].第三步:令max{x1,x2,,xn}ba,取極限得所求面積nSbf(x)dxlimnf)x i0i1lim(ba)[an
a(ba)(nn
(ba)2(n1)(2n6n2
1](ba)[a2a(ba)1(ba)21]1(b3a3)ba.3 3利用定積分定義計算下列積分:bxdx(a<b);a1exdx.0(1)
abai(i1,2,,n1),則n
ba(i1,2,,n).在第i個小區(qū)n間上取右端點
aban
(i1,2,,n).于是bxdx
n
n(abai)baini1
i nin n(ba)2
lim[a(ba)n
(ba)2n(n]2n2
1(b2
a2).(2)xi(i1,2,,n1),則x1(i1,2,,n).i個小區(qū)間上取右端點i n i niixii
(i1,2,,n).于是1x ni
1 1 2 nedxlimenlim
(enenen)0 n
nnn1 1 1lim
1en[1(en)n
en
e1.nn
11en
n
1n(1en)利用定積分的幾何意義說明下列等式:(1)12xdx1;0(2)0
1x2dx;4sinxdx0 cosxdx22cosxdx. 02解(1)12xdx表示由直線y2x、x軸及直線x1所圍成的面積,顯然面積為1.11x21(2)1
1x2dx表示由曲線y x軸及y軸所圍成的四分之一圓的面積,即圓x2y211411
1x2dx112.0 4 4ysinx為奇函數(shù),在關(guān)于原點的對稱區(qū)間[,]x軸所夾的面積的代數(shù)和為零,即sinxdx2cosxdxycosxx軸上[ 2
,]一段所圍成的圖形的面積.因為cosx2為偶函數(shù),所以此圖形關(guān)于y軸對稱.因此圖形面積的一半為2cosxdx,即0 2cosxdx22cosxdx. 02水利工程中要計算攔水閘門所受的水壓力,已知閘門上水的壓強p(單位面積上的壓力大小)是水深h的函數(shù),且有p98h(kN/m2).若閘門高H3m,寬L2m,求水面與閘門頂相齊時閘門所受的水壓力P..
Hi(i1,2,,n1)將區(qū)間[0,H]分為n分個小區(qū)間,各n小區(qū)間的長為
H(i1,2,,n).n在第i個小區(qū)間[xi1,xi]上,閘門相應(yīng)部分所受的水壓力近似為Pi9.8xilxi.閘門所受的水壓力為Plim
n9.8x
n9.8Llim
HiH9.8LH2limn(n1)4.8LH2. i ni1
ni1n
n 2n將L2,H3代入上式得P88.2(千牛).證明定積分性質(zhì):bkf(x)dxkbf(x)dx;a abdxba.a ab 證明(1)kf(x)dxlim kf
nklim
f)x
bf(x)dx.0i1
i i 0i1
i i (2)
n nxlim
lim(ba)ba.lim0i1
i 0
i0估計下列各積分的值(1)4(x21)dx;15(2)44
(1sin
x)dx;13xarctanxdx;13ex2xdx.2解(1)因為當(dāng)1x4時,2x2117,所以2(41)4(x21)dx17(41),1即 64(x21)dx51.1(2)x5時11sin2x2,所以4 45 5 2 5 (44)44
(1sin
x)dx2(),4 45即 44
(1sin
x)dx2.3f(x)xarctanx在區(qū)間[1,3
3]上的最大值M與最小值m.f(x)arctanx
x1x
.因為當(dāng)
1x
時,f(x)0,所以函數(shù)f(x)xarctanx在區(qū)間3333633[13333633
3]上單調(diào)增加.于是33mf(1)133
arctan1
,Mf(
3)
3.3因此 63
31)
3xarctanxdx31331
31),33即 3xarctanxdx.339 1 33f(x)ex2x在區(qū)間[,2M.f(x)ex2x(2x1),駐點為x1.2比較f(0)1,f(2)e2,
f(12
)
14,m
14,Me
2.于是1
x2x 2e4(20)0
dx
(20),即 2e
2
x2x
1dxdx2e4.7.f(x)g(x)在[ab]上連續(xù),證明:(1)若在[a,b]上f(x)0,且bf(x)dx0,則在[a,b]上f(x)0;aa(2)若在[ab]上,f(x)0,f(x)?0,則bf(x)dx0a(3)若在[a,b]上,f(x)g(x),且bf(x)dxbg(x)dx,則在[ab]上f(x)g(x).a a證明(1)假如f(x)?0,則必有f(x)0.根據(jù)f(x)在[a,b]上的連續(xù)性,在[a,b]上存在一點x0,使f(x0)0,且f(x0)為f(x)在[a,b]上的最大值.再由連續(xù)性,存在[c,d][a,b],且x0[c,d],使當(dāng)x[c,d]時,
f(x)f(x0).于是2bf(x)dxcf(x)dxdf(x)dxbf(x)dxdf(x)dxf(x0)(dc)0.a a c d c 2這與條件bf(x)dx0相矛盾.因此在[a,b]上f(x)0.a(2)f(x)在[a,b]上連續(xù),所以在[a,b]上存在一點x0,使f(x0)0,且f(x0)為f(x)在[a,b]上的最大值.再由連續(xù)性,存在[c,d][a,b],且x0[c,d],使當(dāng)x[c,d]時,
f(x)f(x0).于是2b f(x)dxf(x)dxf(x0)(dc)b a c 2證法二因為f(x)0,所以bf(x)dx0.假如bf(x)dx0不成立.則只有bf(x)dx0,a a a根據(jù)結(jié)論(1),f(x)0,矛盾.因此bf(x)dx0.a(3)令F(x)g(x)f(x),則在[a,b]上F(x)0且bF(x)dxb[g(x)f(x)]dxbg(x)dxbf(x)dx0,a a a a由結(jié)論(1),在[ab]F(x)0,f(x)g(x).4.7題的結(jié)論,說明下列積分哪一個的值較大:x2dx還是x3dx?0 02x2dx還是2x3dx?1 12lnxdx還是2(lnx2dx?1 1xdx還是x)dx?0 01exdx還是x)dx?0 0解(1)因為當(dāng)0x1時,x2x3,所以1x2dx1x3dx.0 0又當(dāng)0x1時,x2x3,所以1x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)數(shù)學(xué)新人教版一年級下冊20以內(nèi)口算練習(xí)題大全
- 遼寧工程技術(shù)大學(xué)《建筑工程概預(yù)算課程設(shè)計A》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川省瀘州市納溪區(qū)2024年中考數(shù)學(xué)適應(yīng)性考試試題含答案
- 九州職業(yè)技術(shù)學(xué)院《數(shù)字化運營管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院《兒童文學(xué)與兒童劇創(chuàng)編》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉安幼兒師范高等??茖W(xué)?!缎竽廖⑸飳W(xué)實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南理工學(xué)院《導(dǎo)游實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北生物科技職業(yè)學(xué)院《歷史學(xué)綜合素質(zhì)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《彈力》(教學(xué)設(shè)計)-2024-2025學(xué)年人教版(2024)初中物理八年級下冊
- 高考物理模擬測試題(含答案)
- 《陸上風(fēng)電場工程概算定額》NBT 31010-2019
- 原油脫硫技術(shù)
- 部編版初中語文七至九年級語文教材各冊人文主題與語文要素匯總一覽表合集單元目標(biāo)能力點
- 工程項目收入情況統(tǒng)計表
- GB/T 29490-2013企業(yè)知識產(chǎn)權(quán)管理規(guī)范
- GB/T 14436-1993工業(yè)產(chǎn)品保證文件總則
- 湖南省鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心地址醫(yī)療機構(gòu)名單目錄
- 《中外資產(chǎn)評估準則》課件第6章 英國評估準則
- FZ∕T 63006-2019 松緊帶
- 罐區(qū)自動化系統(tǒng)總體方案(31頁)ppt課件
- 工程建設(shè)項目內(nèi)外關(guān)系協(xié)調(diào)措施
評論
0/150
提交評論