版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1082.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.83.設全集為R,集合,,則A. B. C. D.4.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.5.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.6.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則7.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.8.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a9.若集合,則()A. B.C. D.10.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種11.已知集合,,則A. B.C. D.12.設集合,,若,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.14.已知,在方向上的投影為,則與的夾角為_________.15.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則__________.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.18.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.19.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.20.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.21.(12分)設函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設曲線與曲線相交于,兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)幾何概型的概率公式求出對應面積之比即可得到結(jié)論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.2.C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.3.B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.4.A【解析】
首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.5.C【解析】
首先根據(jù)垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質(zhì)確定外接球球心的位置.6.C【解析】
根據(jù)線面的位置關系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質(zhì),考查了推理論證能力.7.D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.8.A【解析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數(shù)零點問題,常常利用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學思想.9.A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.10.B【解析】
首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應用,易錯點是忽略分組中涉及到的平均分組問題.11.D【解析】
因為,,所以,,故選D.12.C【解析】
由得出,利用集合的包含關系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數(shù),考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.14.【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀椋磰A角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.15.【解析】
設等比數(shù)列的公比為,根據(jù)題意求出和的值,進而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數(shù)列求和,解答的關鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎題.16.【解析】
由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進而由三角函數(shù)(2)設根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數(shù)式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.18.特征值為1,特征向量為.【解析】
設出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學運算的核心素養(yǎng).19.(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數(shù)求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.20.(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;
(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉(zhuǎn)化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設直線AB的方程為y=k(x+1)?1(k≠0).由得,則,.因為點A,B在拋物線C上,所以,.因為PF⊥x軸,所以,所以|MF|?|NF|的值為1.【點睛】本題考查拋物線的定義、標準方程及直線與拋物線中的定值問題,常用韋達定理設而不求來求解,本題解題關鍵是找出弦長與斜率之間的關系進行求解,屬于中等題.21.(1)(2)的遞減區(qū)間為和【解析】
(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.22.(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公益崗位用工合作協(xié)議3篇
- 2025年度電商平臺會員消費返利協(xié)議3篇
- 2025年度廢塑料瓶回收與環(huán)保瓶蓋生產(chǎn)合同樣板3篇
- 二零二五年度農(nóng)機智能化作業(yè)合同書3篇
- 二零二五年度電子信息產(chǎn)品開發(fā)合作協(xié)議書2篇
- 二零二五年度消防安全風險評估與整改方案協(xié)議3篇
- 農(nóng)村土地經(jīng)營權抵押貸款擔保合同
- 2025年度醫(yī)藥研發(fā)人員競業(yè)禁止勞動合同書3篇
- 2025年度餐飲業(yè)食品安全責任書3篇
- 二零二五年度歷史文化名城拆遷房產(chǎn)分割與文物保護合同3篇
- 基于老舊小區(qū)加裝電梯特殊安全及風險控制的研究
- 甘肅省蘭州市(2024年-2025年小學三年級語文)人教版綜合練習(上學期)試卷(含答案)
- 2024年人教版小學四年級信息技術(上冊)期末試卷及答案
- 譯林版小學英語二年級上全冊教案
- DL∕T 821-2017 金屬熔化焊對接接頭射線檢測技術和質(zhì)量分級
- DL∕ T 1195-2012 火電廠高壓變頻器運行與維護規(guī)范
- 小學五年級英語語法練習
- NB-T32004-2018光伏并網(wǎng)逆變器技術規(guī)范
- 領導與班子廉潔談話記錄(4篇)
- 衡陽市耒陽市2022-2023學年七年級上學期期末語文試題【帶答案】
- 文庫發(fā)布:strata手冊
評論
0/150
提交評論