2023屆寶坻區(qū)第一中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁
2023屆寶坻區(qū)第一中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁
2023屆寶坻區(qū)第一中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁
2023屆寶坻區(qū)第一中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁
2023屆寶坻區(qū)第一中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),是空間兩條不同的直線,,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④2.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.3.已知,,則()A. B. C.3 D.44.若復(fù)數(shù)滿足,則()A. B. C.2 D.5.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長度而得到,則函數(shù)的解析式為()A. B.C. D.6.設(shè)集合則()A. B. C. D.7.設(shè)函數(shù)若關(guān)于的方程有四個(gè)實(shí)數(shù)解,其中,則的取值范圍是()A. B. C. D.8.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.9.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.610.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊(duì)方法數(shù)為().A.432 B.576 C.696 D.96011.如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.12.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足,則的最小值是______________.14.已知全集,集合則_____.15.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點(diǎn),則的面積為_________16.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=ex-x2-kx(其中e為自然對數(shù)的底,k為常數(shù))有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)k的取值范圍;(2)證明:f(x)的極大值不小于1.18.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.19.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.20.(12分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項(xiàng)和;(2)已知數(shù)列滿足:(?。θ我獾?;(ⅱ)對任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.22.(10分)已知兩數(shù).(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);(2)當(dāng)時(shí),若恒成立,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)?,,所以或,因?yàn)?,所以,故②對③:或,故③錯(cuò)④:如圖因?yàn)?,,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)?,,所以,所以,故④?故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.2、A【解析】

由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.3、A【解析】

根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)?,所以,解得則.故選:A.【點(diǎn)睛】本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.4、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.5、A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.6、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡單題.7、B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計(jì)算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.8、D【解析】

列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.9、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實(shí)軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號.故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.10、B【解析】

先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊(duì)方法數(shù)為種.故選:B.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,在分類時(shí),要注意不重不漏的原則,本題是一道中檔題.11、C【解析】

過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因?yàn)?,所以平面,所以,?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)?,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.12、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過點(diǎn)時(shí),直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【點(diǎn)睛】本題主要考查線性規(guī)劃問題,意在考查學(xué)生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.14、【解析】

根據(jù)補(bǔ)集的定義求解即可.【詳解】解:.故答案為.【點(diǎn)睛】本題主要考查了補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.16、2【解析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)求出,記,問題轉(zhuǎn)化為方程有兩個(gè)不同解,求導(dǎo),研究極值即可得結(jié)果;(2)由(1)知,在區(qū)間上存在極大值點(diǎn),且,則可求出極大值,記,求導(dǎo),求單調(diào)性,求出極值即可.【詳解】(1),由,記,,由,且時(shí),,單調(diào)遞減,,時(shí),,單調(diào)遞增,,由題意,方程有兩個(gè)不同解,所以;(2)解法一:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,記,則,因?yàn)?,所以,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,所以,即函數(shù)的極大值不小于1.解法二:由(1)知,在區(qū)間上存在極大值點(diǎn),且,所以的極大值為,因?yàn)?,,所?即函數(shù)的極大值不小于1.【點(diǎn)睛】本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,考查學(xué)生綜合分析能力與轉(zhuǎn)化能力,是一道中檔題.18、(1);(2)見解析.【解析】

(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式計(jì)算即可;(2)先求出數(shù)列的通項(xiàng),再利用裂項(xiàng)相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項(xiàng)3為公差的等差數(shù)列,所以,即.(2)因?yàn)?,則,所以,又是遞增數(shù)列,所以,綜上,.【點(diǎn)睛】本題考查由遞推公式求數(shù)列通項(xiàng)公式、裂項(xiàng)相消法求數(shù)列的和,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.19、(1)答案不唯一,具體見解析(2)【解析】

(1)由于函數(shù),得出,分類討論當(dāng)和時(shí),的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時(shí),的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解:(1)因?yàn)椋裕佼?dāng)時(shí),,在上單調(diào)遞減.②當(dāng)時(shí),令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(2)因?yàn)?,可知,,令,?設(shè),則.當(dāng)時(shí),,在上單調(diào)遞增,所以在上的值域是,即.當(dāng)時(shí),沒有實(shí)根,且,在上單調(diào)遞減,,符合題意.當(dāng)時(shí),,所以有唯一實(shí)根,當(dāng)時(shí),,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問題求參數(shù)范圍,還運(yùn)用了構(gòu)造函數(shù)法,還考查分類討論思想和計(jì)算能力,屬于難題.20、(1);(2)①;②證明見解析.【解析】

(1)由條件可得,結(jié)合等差數(shù)列的定義和通項(xiàng)公式、求和公式,即可得到所求;(2)①若,可令,運(yùn)用已知條件和等比數(shù)列的性質(zhì),即可得到所求充要條件;②當(dāng),,,由等比數(shù)列的定義和不等式的性質(zhì),化簡變形,即可得到所求結(jié)論.【詳解】解:(1),,且為非零常數(shù),,,可得,可得數(shù)列的首項(xiàng)為,公差為的等差數(shù)列,可得,前項(xiàng)和為;(2)①若,可令,,且,即,,,,對任意的,,可得,可得,,數(shù)列是等比數(shù)列,則,,可得,,即,又,即有,即,數(shù)列是等比數(shù)列的充要條件為;②證明:對任意的,,,,,當(dāng),,,可得,即以為首項(xiàng)、為公比的等比數(shù)列;同理可得以為首項(xiàng)、為公比的等比數(shù)列;對任意的,,可得,即有,所以對,,,可得,,即且,則,可令,故數(shù)列,,,,,,,,,是以為首項(xiàng),為公比的等比數(shù)列,其中.【點(diǎn)睛】本題考查新定義的理解和運(yùn)用,考查等差數(shù)列和等比數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查分類討論思想方法和推理、運(yùn)算能力,屬于難題.21、(1)(2)【解析】

(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.22、(1)唯一的極大值點(diǎn)1,無極小值點(diǎn).(2)1【解析】

(1)求出導(dǎo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論