




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)z滿足,則()A. B. C. D.2.已知函數(shù)是上的偶函數(shù),且當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.3.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.4.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人5.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.6.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.7.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.8.集合,,則=()A. B.C. D.9.在中,為中點,且,若,則()A. B. C. D.10.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.411.函數(shù)()的圖像可以是()A. B.C. D.12.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.26二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關(guān)于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.14.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.15.設(shè)滿足約束條件,則的取值范圍是______.16.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線l過點,且傾斜角為,以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點,當(dāng),求的值.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.19.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設(shè)點是線段上的動點,當(dāng)直線與直線所成的角最小時,求三棱錐的體積.20.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的面積.22.(10分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.2、D【解析】
利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.3、B【解析】
由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.4、D【解析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.5、C【解析】
求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.6、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題7、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.8、C【解析】
先化簡集合A,B,結(jié)合并集計算方法,求解,即可.【詳解】解得集合,所以,故選C.【點睛】本道題考查了集合的運算,考查了一元二次不等式解法,關(guān)鍵化簡集合A,B,難度較?。?、B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.10、D【解析】
a,b可看成是與和交點的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.11、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.12、D【解析】
利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計算公式可得所求的種數(shù).【詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【點睛】本題考查組合的應(yīng)用,此類問題注意實際問題的合理轉(zhuǎn)化,本題屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設(shè)圓C1上存在點P(x0,y0)滿足題意,點P關(guān)于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關(guān)系,其中涉及點關(guān)于直線對稱點問題,兩個圓有公共點的判定方式.14、【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15、【解析】
作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質(zhì)即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當(dāng)時,z=0;當(dāng)時將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.16、32【解析】
由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標(biāo)方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標(biāo)方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標(biāo)方程為得,,得,,18、(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.19、(1)見解析;(2).【解析】
(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標(biāo)系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標(biāo)系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當(dāng),即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計算量較大,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.20、(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當(dāng)時,,則當(dāng)時,由得,,解得;當(dāng)時,恒成立;當(dāng)時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當(dāng)時,①式等號成立,即.又因為,②當(dāng)時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.21、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因為曲線的圓心為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江國企招聘2025嘉興市南湖投資開發(fā)建設(shè)集團有限公司下屬公司招聘14人筆試參考題庫附帶答案詳解
- 浙江交通職業(yè)技術(shù)學(xué)院《語演講與辯論》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢航海職業(yè)技術(shù)學(xué)院《單片機原理及應(yīng)用C》2023-2024學(xué)年第二學(xué)期期末試卷
- 德陽城市軌道交通職業(yè)學(xué)院《工程機械液壓傳動》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東中醫(yī)藥大學(xué)《焊接質(zhì)量檢驗與評價》2023-2024學(xué)年第二學(xué)期期末試卷
- 肇慶學(xué)院《社區(qū)工作實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆農(nóng)業(yè)大學(xué)《建筑攝影》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南輕工職業(yè)學(xué)院《計算機地圖制圖》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南外國語職業(yè)學(xué)院《GIS開發(fā)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東外語外貿(mào)大學(xué)南國商學(xué)院《電力專業(yè)俄語》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025-2030年中國溫泉特色酒店行業(yè)市場深度調(diào)研及發(fā)展趨勢與投資前景預(yù)測研究報告
- 家政合伙合同協(xié)議書
- 安監(jiān)考試試題及答案
- 【綏化】2025年黑龍江綏化市“市委書記進校園”企事業(yè)單位引才1167人筆試歷年典型考題及考點剖析附帶答案詳解
- 合肥市2025屆高三年級5月教學(xué)質(zhì)量檢測(合肥三模)歷史試題+答案
- 肯德基假期兼職合同協(xié)議
- 貨運司機測試題及答案
- 2025年全國防災(zāi)減災(zāi)日班會 課件
- SL631水利水電工程單元工程施工質(zhì)量驗收標(biāo)準(zhǔn)第1部分:土石方工程
- (二調(diào))武漢市2025屆高中畢業(yè)生二月調(diào)研考試 英語試卷(含標(biāo)準(zhǔn)答案)+聽力音頻
- 數(shù)學(xué)-湖北省武漢市2025屆高中畢業(yè)生二月調(diào)研考試(武漢二調(diào))試題和解析
評論
0/150
提交評論