2023屆貴州省志誠實驗學(xué)校高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2023屆貴州省志誠實驗學(xué)校高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2023屆貴州省志誠實驗學(xué)校高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2023屆貴州省志誠實驗學(xué)校高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2023屆貴州省志誠實驗學(xué)校高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.某大學(xué)計算機學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學(xué)習(xí)、服務(wù)器開發(fā)五個方向展開研究,且每個方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種3.設(shè),滿足,則的取值范圍是()A. B. C. D.4.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.5.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.7.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.8.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.9.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.10.設(shè)集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知,則下列不等式正確的是()A. B.C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過點,若,則__________.14.若,且,則的最小值是______.15.函數(shù)的值域為_____.16.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.18.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.19.(12分)超級病菌是一種耐藥性細菌,產(chǎn)生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次,假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.(i)試運用概率統(tǒng)計的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.參考數(shù)據(jù):,,,,20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),以坐標(biāo)原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的普通方程;(2)設(shè)射線與曲線交于不同于極點的點,與曲線交于不同于極點的點,求線段的長.21.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.22.(10分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

求出集合,利用集合的基本運算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.2、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當(dāng)人臉識別方向有2人時,有種,當(dāng)人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、C【解析】

首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問題,屬于基礎(chǔ)題.4、C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題5、B【解析】

求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.6、A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.7、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時,,令,在是增函數(shù),時,有一個零點,當(dāng)時,,令當(dāng)時,,在上單調(diào)遞增,當(dāng)時,,在上單調(diào)遞減,所以當(dāng)時,取得最大值,因為在上有3個零點,所以當(dāng)時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.8、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】

選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標(biāo)明確,易于操作.10、C【解析】

作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,,則,,排除B、C選項;(2)當(dāng)時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.12、B【解析】

運行程序,依次進行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B【點睛】本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.14、8【解析】

利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、【解析】

利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。16、22【解析】

設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當(dāng)共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、.【解析】試題分析:,所以.試題解析:B.因為,所以.18、(1)證明見解析;(2)【解析】

(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設(shè)AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O(shè)為坐標(biāo)原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系∵BE與平面ABCD所成的角為,,,,,,.,設(shè)平面BEF的法向量為,,,設(shè)平面的法向量設(shè)二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學(xué)生的計算能力,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點的坐標(biāo),是一道中檔題.19、(1)(2)(i)(,且).(ii)最大值為4.【解析】

(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關(guān)于k的函數(shù)關(guān)系式;(ii)由可得,推導(dǎo)出,設(shè)(),利用導(dǎo)函數(shù)判斷的單調(diào)性,由單調(diào)性可求出的最大值【詳解】(1)設(shè)恰好經(jīng)過2次檢驗?zāi)馨殃栃詷颖救繖z驗出來為事件A,則,∴恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關(guān)于k的函數(shù)關(guān)系式為(,且)(ii)由題意知,得,,,,設(shè)(),則,令,則,∴當(dāng)時,,即在上單調(diào)增減,又,,,又,,,∴k的最大值為4【點睛】本題考查古典概型的概率公式的應(yīng)用,考查隨機變量及其分布,考查利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性20、(1);(2)【解析】

曲線的參數(shù)方程轉(zhuǎn)換為直角坐標(biāo)方程為.再用極直互化公式求解,曲線的極坐標(biāo)方程用極直互化公式轉(zhuǎn)換為直角坐標(biāo)方程.射線與曲線的極坐標(biāo)方程聯(lián)解求出,射線與曲線的極坐標(biāo)方程聯(lián)解求出,再用得解【詳解】解:曲線的參數(shù)方程為(為參數(shù),轉(zhuǎn)換為直角坐標(biāo)方程為.把,代入得:曲線的極坐標(biāo)方程為.轉(zhuǎn)換為直角坐標(biāo)方程為.設(shè)射線與曲線交于不同于極點的點,所以,解得.與曲線交于不同于極點的點,所以,解得,所以【點睛】本題考查參數(shù)方程、極坐標(biāo)方程直角坐標(biāo)方程相互轉(zhuǎn)換及極坐標(biāo)下利用和的幾何意義求線段的長.(1)直角坐標(biāo)方程化為極坐標(biāo)方程只需將直角坐標(biāo)方程中的分別用,代替即可得到相應(yīng)極坐標(biāo)方程.參數(shù)方程化為極坐標(biāo)方程必須先化成直角坐標(biāo)方程再轉(zhuǎn)化為極坐標(biāo)方程.(2)直接求解,能達到化繁為簡的解題目的;如果幾何關(guān)系不容易通過極坐標(biāo)表示時,可以先化為直角坐標(biāo)方程,將不熟悉的問題轉(zhuǎn)化為熟悉的問題加以解決.21、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論