下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省臨汾市霍州煤電集團(tuán)第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若關(guān)于的方程有且只有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是
(
)
A.
B.
C.
D.
參考答案:D2.將函數(shù)的圖像向右平移3個(gè)單位再向下平移2個(gè)單位所得圖像的函數(shù)解析式為(
)A.
B.
C.
D.參考答案:C3.(3分)已知直線a?α,給出以下三個(gè)命題:①若平面α∥平面β,則直線a∥平面β;②若直線a∥平面β,則平面α∥平面β;③若直線a不平行于平面β,則平面α不平行于平面β.其中正確的命題是() A. ② B. ③ C. ①② D. ①③參考答案:D考點(diǎn): 平面與平面平行的性質(zhì);平面與平面平行的判定.專(zhuān)題: 分析法.分析: 對(duì)于①若平面α∥平面β,則直線a∥平面β;由面面平行顯然推出線面平行,故正確.對(duì)于②若直線a∥平面β,則平面α∥平面β;因?yàn)橐粋€(gè)線面平行推不出面面平行.故錯(cuò)誤.對(duì)于③若直線a不平行于平面β,則平面α不平行于平面β,因?yàn)榫€面不平面必面面不平行.故正確.即可得到答案.解答: 解①若平面α∥平面β,則直線a∥平面β;因?yàn)橹本€a?α,平面α∥平面β,則α內(nèi)的每一條直線都平行平面β.顯然正確.②若直線a∥平面β,則平面α∥平面β;因?yàn)楫?dāng)平面α與平面β相加時(shí)候,仍然可以存在直線a?α使直線a∥平面β.故錯(cuò)誤.③若直線a不平行于平面β,則平面α不平行于平面β,平面內(nèi)有一條直線不平行與令一個(gè)平面,兩平面就不會(huì)平行.故顯然正確.故選D.點(diǎn)評(píng): 此題主要考查平面與平面平行的性質(zhì)及判定的問(wèn)題,屬于概念性質(zhì)理解的問(wèn)題,題目較簡(jiǎn)單,幾乎無(wú)計(jì)算量,屬于基礎(chǔ)題目.4.直線與連接,的線段相交,則的取值范圍是(
)(A)
(B)
(C)
(D)參考答案:B5.設(shè)向量與的夾角為θ,定義與的“向量積”:是一個(gè)向量,它的模,若,則=()A.B.2C.D.4參考答案:B考點(diǎn):平面向量的綜合題.
專(zhuān)題:新定義.分析:設(shè)的夾角為θ,由向量的數(shù)量積公式先求出cosθ==﹣,從而得到sinθ=,由此能求出.解答:解:設(shè)的夾角為θ,則cosθ==﹣,∴sinθ=,∴=2×2×=2.故選B.點(diǎn)評(píng):本題考查平面向量的綜合運(yùn)用,解題時(shí)要正確理解向量積的概念,認(rèn)真審題,注意向量的數(shù)量積的綜合運(yùn)用.6.已知點(diǎn)、、、,則在方向上的投影為(
)A.
B.
C.
D.參考答案:D7.在△ABC中,已知D是AB邊上一點(diǎn),若=2,=,則λ=()A. B. C.﹣ D.﹣參考答案:A【考點(diǎn)】9B:向量加減混合運(yùn)算及其幾何意義.【分析】本題要求字母系數(shù),辦法是把表示出來(lái),表示時(shí)所用的基底要和題目中所給的一致,即用和表示,畫(huà)圖觀察,從要求向量的起點(diǎn)出發(fā),沿著三角形的邊走到終點(diǎn),把求出的結(jié)果和給的條件比較,寫(xiě)出λ.【解答】解:在△ABC中,已知D是AB邊上一點(diǎn)∵=2,=,∴=,∴λ=,故選A.8.若直線過(guò)點(diǎn)M(1,2),N(4,2+),則此直線的傾角為(
) A.30° B.45° C.60° D.90°參考答案:A考點(diǎn):直線的傾斜角.專(zhuān)題:直線與圓.分析:利用兩點(diǎn)的坐標(biāo),求出直線的斜率,從而求出該直線的傾斜角.解答: 解:∵直線過(guò)點(diǎn)M(1,2),N(4,2+),∴該直線的斜率為k==,即tanα=,α∈[0°,180°);∴該直線的傾斜角為α=30°.故選:A.點(diǎn)評(píng):本題考查了利用兩點(diǎn)的坐標(biāo)求直線的斜率與傾斜角的應(yīng)用問(wèn)題,是基礎(chǔ)題目.9.設(shè),且,則()A.
B.
C.
D.參考答案:C略10.要得到函數(shù)的圖象,只需將函數(shù)的圖象(
)A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向右平移個(gè)單位 D.向左平移個(gè)單位參考答案:C試題分析:因?yàn)椋灾恍鑼⒑瘮?shù)的圖象右移個(gè)單位即得函數(shù)的圖象,關(guān)系C??键c(diǎn):本題主要考查三角函數(shù)圖象的變換,誘導(dǎo)公式的應(yīng)用。點(diǎn)評(píng):簡(jiǎn)單題,函數(shù)圖象左右平移變換中,遵循“左加右減”。二、填空題:本大題共7小題,每小題4分,共28分11.計(jì)算:log3+lg25+lg4+﹣=.參考答案:4【考點(diǎn)】對(duì)數(shù)的運(yùn)算性質(zhì).【分析】利用對(duì)數(shù)和指數(shù)的運(yùn)算性質(zhì)即可得出.【解答】解:原式=+lg(25×4)+2﹣==4.故答案為:4.12.設(shè),函數(shù)的圖像向右平移個(gè)單位后與原圖像重合,則的最小值是
.參考答案:略13.已知函數(shù)f(x)=sin(ωx)(ω為正整數(shù))在區(qū)間(﹣,)上不單調(diào),則ω的最小值為
.參考答案:4【考點(diǎn)】三角函數(shù)的最值.【分析】根據(jù)題意,結(jié)合正弦函數(shù)的圖象與性質(zhì),得出ω?(﹣)<﹣或ω?≥,求出ω的最小值即可.【解答】解:因?yàn)棣貫檎麛?shù),函數(shù)f(x)=sin(ωx)在區(qū)間(﹣,)上不單調(diào),所以ω?(﹣)<﹣,或ω?≥,解得ω>3,所以ω的最小值為4.故答案為:4.14.集合A={x|(a﹣1)x2+3x﹣2=0}有且僅有兩個(gè)子集,則a=__________.參考答案:1或﹣考點(diǎn):根的存在性及根的個(gè)數(shù)判斷;子集與真子集.專(zhuān)題:計(jì)算題.分析:先把集合A={x|(a﹣1)x2+3x﹣2=0}中有且僅有一個(gè)元素即是方程(a﹣1)x2+3x﹣2=0有且僅有一個(gè)根,再對(duì)二次項(xiàng)系數(shù)a﹣1分等于0和不等于0兩種情況討論,即可找到滿足要求的a的值.解答:解:集合A={x|(a﹣1)x2+3x﹣2=0}中有且僅有一個(gè)元素即是方程(a﹣1)x2+3x﹣2=0有且僅有一個(gè)根.當(dāng)a=1時(shí),方程有一根x=符合要求;當(dāng)a≠1時(shí),△=32﹣4×(a﹣1)×(﹣2)=0,解得a=﹣故滿足要求的a的值為1或﹣.故答案為:1或﹣.點(diǎn)評(píng):本題主要考查根的個(gè)數(shù)問(wèn)題.當(dāng)一個(gè)方程的二次項(xiàng)系數(shù)含有參數(shù),又求根時(shí),一定要注意對(duì)二次項(xiàng)系數(shù)a﹣1分等于0和不等于0兩種情況討論.
15.已知:,若,則
;若,則
參考答案:
,16.若x,y滿足約束條件,則的最小值為_(kāi)________.參考答案:3【分析】在平面直角坐標(biāo)系內(nèi),畫(huà)出可行解域,平行移動(dòng)直線,在可行解域內(nèi),找到直線在縱軸上截距最小時(shí)所經(jīng)過(guò)點(diǎn)的坐標(biāo),代入目標(biāo)函數(shù)中,求出目標(biāo)函數(shù)的最小值.【詳解】在平面直角坐標(biāo)系中,約束條件所表示的平面區(qū)域如下圖所示:當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線縱軸上截距最小,解方程組,因此點(diǎn)坐標(biāo)為,所以的最小值為.【點(diǎn)睛】本題考查了線性目標(biāo)函數(shù)最小值問(wèn)題,正確畫(huà)出可行解域是解題的關(guān)鍵.17.求過(guò)兩點(diǎn)且圓心在直線上的圓的標(biāo)準(zhǔn)方程________參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R). (1)若函數(shù)y=f(x)的零點(diǎn)為﹣1和1,求實(shí)數(shù)b,c的值; (2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍. 參考答案:【考點(diǎn)】二次函數(shù)的性質(zhì). 【專(zhuān)題】函數(shù)思想;綜合法;函數(shù)的性質(zhì)及應(yīng)用. 【分析】(1)根據(jù)根與系數(shù)的關(guān)系列方程組解出; (2)根據(jù)f(1)=0得出b,c的關(guān)系,令g(x)=f(x)+x+b,根據(jù)零點(diǎn)的存在性定理列方程組解出. 【解答】解:(1)∵﹣1,1是函數(shù)y=f(x)的零點(diǎn),∴,解得b=0,c=﹣1. (2)∵f(1)=1+2b+c=0,所以c=﹣1﹣2b. 令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x﹣b﹣1, ∵關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi), ∴,即.解得<b<, 即實(shí)數(shù)b的取值范圍為(,). 【點(diǎn)評(píng)】本題考查了二次函數(shù)根與系數(shù)得關(guān)系,零點(diǎn)的存在性定理,屬于中檔題.19.(本小題滿分14分)已知圓,是直線上的動(dòng)點(diǎn),、與圓相切,切點(diǎn)分別為點(diǎn)、.
(1)若點(diǎn)的坐標(biāo)為,求切線、的方程;
(2)若點(diǎn)的坐標(biāo)為,求直線的方程.參考答案:(1)由題意可知當(dāng)點(diǎn)的坐標(biāo)為(0,0)時(shí),切線的斜率存在,可設(shè)切線方程為.………1分則圓心到切線的距離,即,, …………3分∴切線、的方程為.
…………5分(2)設(shè)切線、的切點(diǎn)為.∵,則切線的斜率為,
…………6分則切線的方程為.
…………7分化簡(jiǎn)為,即∵點(diǎn)在圓上,得 …………8分又∵在切線上,∴① …………9分同理得② …………10分由①②可知直線過(guò)點(diǎn)∴直線的方程為 …………12分特別當(dāng)時(shí),或當(dāng)時(shí)切線的方程為,解得,得切點(diǎn)此時(shí)的方程為上式也成立當(dāng)時(shí)得經(jīng)檢驗(yàn)方程也成立綜上所述直線的方程為 …………14分20.已知函數(shù).(1)若f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)y=f(x)在[m,n]上的值域是[m,n],求實(shí)數(shù)a的取值范圍.參考答案:【考點(diǎn)】函數(shù)恒成立問(wèn)題;函數(shù)的值域.【分析】(1)由f(x)<2x在(1,+∞)上恒成立,得a<+2x.記g(x)=+2x,在(1,+∞)上是增函數(shù),得g(x)>g(1)=3,由此能求出a的范圍.(2)函數(shù)y=f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),再由n>m>0和0>n>m兩種情況分別討論實(shí)數(shù)a的取值范圍.【解答】解:(1)若f(x)<2x在(1,+∞)上恒成立,得a﹣<2x即a<+2x,記g(x)=+2x,在(1,+∞)上是增函數(shù),得g(x)>g(1)=3,所以:a≤3(2)函數(shù)y=f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞)?。┊?dāng)n>m>0時(shí),f(x)在[m,n]上是增函數(shù),故,解得:a>2;ⅱ)當(dāng)0>n>m時(shí),f(x)在[m,n]上是減函數(shù),故,解得:a=0;所以:a∈{0}∪(2,+∞).21.已知函數(shù).(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025項(xiàng)目經(jīng)理中心目標(biāo)成本預(yù)算承包合同
- 2025企業(yè)抵押借款合同模板
- 2025杭州市貨物買(mǎi)賣(mài)合同范本
- 2025洗車(chē)場(chǎng)承包合同范本
- 學(xué)校安保人員聘用合同
- 停車(chē)場(chǎng)租賃合同范本
- 城市應(yīng)急通道砂石路施工合同
- 二零二五年度都市生活配套房屋租賃合同
- 水族館租賃合同:海洋生物展覽
- 電子廠防水施工合同
- 智慧農(nóng)業(yè)的傳感器與智能設(shè)備
- 旅游路線規(guī)劃設(shè)計(jì)方案
- DB37-T 5097-2021 山東省綠色建筑評(píng)價(jià)標(biāo)準(zhǔn)
- 五年級(jí)上冊(cè)簡(jiǎn)易方程練習(xí)100題及答案
- MDR醫(yī)療器械法規(guī)考核試題及答案
- 讓學(xué)生看見(jiàn)你的愛(ài)
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯(cuò)誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報(bào)告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對(duì)象登記表(樣表)
評(píng)論
0/150
提交評(píng)論