版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1.3二項式定理1.二項式定理[學(xué)習(xí)目標(biāo)]1.能用計數(shù)原理證明二項式定理.2.掌握二項式定理及其展開式的通項公式.3.會用二項式定理解決與二項展開式有關(guān)的簡單問題.[知識鏈接]1.二項式定理中,項的系數(shù)與二項式系數(shù)有什么區(qū)別?答二項式系數(shù)與項的系數(shù)完全是不同的兩個概念.二項式系數(shù)是指Ceq\o\al(0,n),Ceq\o\al(1,n),…,Ceq\o\al(n,n),它只與各項的項數(shù)有關(guān),而與a,b的值無關(guān),而項的系數(shù)是指該項中除變量外的常數(shù)部分,它不僅與各項的項數(shù)有關(guān),而且也與a,b的值有關(guān).2.二項式(a+b)n與(b+a)n展開式中第r+1項是否相同?答不同.(a+b)n展開式中第r+1項為Ceq\o\al(r,n)an-rbr,而(b+a)n展開式中第r+1項為Ceq\o\al(r,n)bn-rar.[預(yù)習(xí)導(dǎo)引]1.二項式定理公式(a+b)n=Ceq\o\al(0,n)an+Ceq\o\al(1,n)an-1b+…+Ceq\o\al(k,n)an-kbk+…+Ceq\o\al(n,n)bn(n∈N*)叫做二項式定理.2.二項式系數(shù)及通項(1)(a+b)n展開式共有n+1項,其中各項的系數(shù)Ceq\o\al(k,n)(k∈{0,1,2,…,n})叫做二項式系數(shù).(2)(a+b)n展開式的第k+1項叫做二項展開式的通項,記作Tk+1=Ceq\o\al(k,n)an-kbk.要點一二項式定理的正用、逆用例1(1)求(3eq\r(x)+eq\f(1,\r(x)))4的展開式;(2)化簡(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).解(1)法一(3eq\r(x)+eq\f(1,\r(x)))4=Ceq\o\al(0,4)(3eq\r(x))4+Ceq\o\al(1,4)(3eq\r(x))3·eq\f(1,\r(x))+Ceq\o\al(2,4)(3eq\r(x))2·(eq\f(1,\r(x)))2+Ceq\o\al(3,4)(3eq\r(x))·(eq\f(1,\r(x)))3+Ceq\o\al(4,4)·(eq\f(1,\r(x)))4=81x2+108x+54+eq\f(12,x)+eq\f(1,x2).法二(3eq\r(x)+eq\f(1,\r(x)))4=eq\f((3x+1)4,x2)=eq\f(1,x2)[1+Ceq\o\al(1,4)·3x+Ceq\o\al(2,4)(3x)2+Ceq\o\al(3,4)(3x)3+Ceq\o\al(4,4)(3x)4]=eq\f(1,x2)(81x4+108x3+54x2+12x+1)=81x2+108x+54+eq\f(12,x)+eq\f(1,x2).(2)原式=Ceq\o\al(0,5)(x-1)5+Ceq\o\al(1,5)(x-1)4+Ceq\o\al(2,5)(x-1)3+Ceq\o\al(3,5)(x-1)2+Ceq\o\al(4,5)(x-1)+Ceq\o\al(5,5)-1=[(x-1)+1]5-1=x5-1.規(guī)律方法運用二項式定理展開二項式,要記準(zhǔn)展開式的通項公式,對于較復(fù)雜的二項式,有時先化簡再展開更簡捷;要搞清楚二項展開式中的項以及該項的系數(shù)與二項式系數(shù)的區(qū)別.逆用二項式定理可將多項式化簡,對于這類問題的求解,要熟悉公式的特點、項數(shù)、各項冪指數(shù)的規(guī)律以及各項的系數(shù).跟蹤演練1(1)展開(2eq\r(x)+eq\f(1,\r(x)))6;(2)化簡:1+2Ceq\o\al(1,n)+4Ceq\o\al(2,n)+…+2nCeq\o\al(n,n).解(1)(2eq\r(x)+eq\f(1,\r(x)))6=eq\f(1,x3)(2x+1)6=eq\f(1,x3)[Ceq\o\al(0,6)(2x)6+Ceq\o\al(1,6)(2x)5+Ceq\o\al(2,6)(2x)4+Ceq\o\al(3,6)(2x)3+Ceq\o\al(4,6)(2x)2+Ceq\o\al(5,6)(2x)+Ceq\o\al(6,6)]=64x3+192x2+240x+160+eq\f(60,x)+eq\f(12,x2)+eq\f(1,x3).(2)原式=1+2Ceq\o\al(1,n)+22Ceq\o\al(2,n)+…+2nCeq\o\al(n,n)=(1+2)n=3n.要點二二項展開式通項的應(yīng)用例2若(eq\r(x)+eq\f(1,2\r(4,x)))n展開式中前三項系數(shù)成等差數(shù)列,求:(1)展開式中含x的一次項;(2)展開式中的所有有理項.解(1)由已知可得Ceq\o\al(0,n)+Ceq\o\al(2,n)·eq\f(1,22)=2Ceq\o\al(1,n)·eq\f(1,2),即n2-9n+8=0,解得n=8,或n=1(舍去).Tk+1=Ceq\o\al(k,8)(eq\r(x))8-k·(eq\f(1,2\r(4,x)))k=Ceq\o\al(k,8)·2-k·x4-eq\f(3,4)k,令4-eq\f(3,4)k=1,得k=4.所以x的一次項為T5=Ceq\o\al(4,8)2-4x=eq\f(35,8)x.(2)令4-eq\f(3,4)k∈Z,且0≤k≤8,則k=0,4,8,所以含x的有理項分別為T1=x4,T5=eq\f(35,8)x,T9=eq\f(1,256x2).規(guī)律方法利用二項式的通項公式求二項展開式中具有某種特征的項是關(guān)于二項式定理的一類典型題型.常見的有求二項展開式中的第r項、常數(shù)項、含某字母的r次方的項等等.其通常解法就是根據(jù)通項公式確定Tk+1中k的值或取值范圍以滿足題設(shè)的條件.跟蹤演練2已知二項式(x2+eq\f(1,2\r(x)))10.(1)求展開式中的第5項;(2)求展開式中的常數(shù)項.解(1)(x2+eq\f(1,2\r(x)))10的展開式的第5項為T5=Ceq\o\al(4,10)·(x2)6·(eq\f(1,2\r(x)))4=Ceq\o\al(4,10)·(eq\f(1,2))4·x12·(eq\f(1,\r(x)))4=eq\f(105,8)x10.(2)設(shè)第k+1項為常數(shù)項,則Tk+1=Ceq\o\al(k,10)·(x2)10-k·(eq\f(1,2\r(x)))k=Ceq\o\al(k,10)·x20-eq\f(5,2)k·(eq\f(1,2))k(k=0,1,2,…,10),令20-eq\f(5,2)k=0,得k=8,所以T9=Ceq\o\al(8,10)·(eq\f(1,2))8=eq\f(45,256),即第9項為常數(shù)項,其值為eq\f(45,256).要點三二項式定理的應(yīng)用例3(1)用二項式定理證明:34n+2+52n+1能被14整除;(2)求9192除以100的余數(shù).(1)證明34n+2+52n+1=92n+1+52n+1=[(9+5)-5]2n+1+52n+1=(14-5)2n+1+52n+1=142n+1-Ceq\o\al(1,2n+1)×142n×5+Ceq\o\al(2,2n+1)×142n-1×52-…+Ceq\o\al(2n,2n+1)×14×52n-Ceq\o\al(2n+1,2n+1)×52n+1+52n+1=14(142n-Ceq\o\al(1,2n+1)×142n-1×5+Ceq\o\al(2,2n+1)×142n-2×52-…+Ceq\o\al(2n,2n+1)×52n).上式是14的倍數(shù),能被14整除,所以34n+2+52n+1能被14整除.(2)解法一9192=(100-9)92=10092-Ceq\o\al(1,92)×10091×9+Ceq\o\al(2,92)×10090×92-…-Ceq\o\al(91,92)×100×991+992,前面各項均能被100整除,只有末項992不能被100整除,于是求992除以100的余數(shù).∵992=(10-1)92=1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-Ceq\o\al(91,92)×10+(-1)92=1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-920+1=(1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-1000)+81,∴被100除的余數(shù)為81,即9192除以100的余數(shù)為81.法二由9192=(90+1)92=Ceq\o\al(0,92)×9092+Ceq\o\al(1,92)×9091+…+Ceq\o\al(90,92)902+Ceq\o\al(91,92)×90+1,可知前面各項均能被100整除,只有末尾兩項不能被100整除,由于Ceq\o\al(91,92)×90+1=8281=8200+81,故9192除以100的余數(shù)為81.規(guī)律方法利用二項式定理可以解決求余數(shù)和整除的問題,通常需將底數(shù)化成兩數(shù)的和與差的形式,且這種轉(zhuǎn)化形式與除數(shù)有密切的關(guān)系.跟蹤演練3求證:5151-1能被7整除.證明∵5151-1=(49+2)51-1=Ceq\o\al(0,51)4951+Ceq\o\al(1,51)4950×2+…+Ceq\o\al(50,51)×49×250+Ceq\o\al(51,51)×251-1.∴易知除(Ceq\o\al(51,51)×251-1)以外各項都能被7整除.又251-1=(23)17-1=(7+1)17-1=Ceq\o\al(0,17)×717+Ceq\o\al(1,17)×716+…+Ceq\o\al(16,17)×7+Ceq\o\al(17,17)-1=7(Ceq\o\al(0,17)716+Ceq\o\al(1,17)715+…+Ceq\o\al(16,17)),顯然能被7整除,所以(5151-1)能被7整除.1.若(1+eq\r(2))4=a+beq\r(2)(a,b為有理數(shù)),則a+b等于()A.33B.29C.23D.19答案B解析∵(1+eq\r(2))4=1+4eq\r(2)+12+8eq\r(2)+4=17+12eq\r(2)=a+beq\r(2),又∵a,b為有理數(shù),∴a=17,b=12.∴a+b=29.2.在(1-x)5-(1-x)6的展開式中,含x3的項的系數(shù)是()A.-5B.5C.-10D.10答案D解析(1-x)5中x3的系數(shù)-Ceq\o\al(3,5)=-10,-(1-x)6中x3的系數(shù)為-Ceq\o\al(3,6)·(-1)3=20,故(1-x)5-(1-x)6的展開式中x3的系數(shù)為10.3.求(2x-eq\f(3,2x2))5的展開式.解先化簡再求展開式,得(2x-eq\f(3,2x2))5=eq\f((4x3-3)5,32x10)=eq\f(1,32x10)[Ceq\o\al(0,5)(4x3)5+Ceq\o\al(1,5)(4x3)4(-3)+Ceq\o\al(2,5)(4x3)3(-3)2+Ceq\o\al(3,5)(4x3)2(-3)3+Ceq\o\al(4,5)(4x3)(-3)4+Ceq\o\al(5,5)(-3)5]=32x5-120x2+eq\f(180,x)-eq\f(135,x4)+eq\f(405,8x7)-eq\f(243,32x10).1.注意區(qū)分項的二項式系數(shù)與系數(shù)的概念.2.要牢記Ceq\o\al(k,n)an-kbk是展開式的第k+1項,不要誤認為是第k項.3.求解特定項時必須合并通項公式中同一字母的指數(shù),根據(jù)具體要求,令其為特定值.一、基礎(chǔ)達標(biāo)1.(x+2)6的展開式中x3的系數(shù)是 ()A.20 B.40 C.80 D.160答案D解析法一設(shè)含x3的為第r+1項,則Tr+1=Ceq\o\al(r,6)x6-r·2r,令6-r=3,得r=3,故展開式中x3的系數(shù)為Ceq\o\al(3,6)×23=160.法二根據(jù)二項展開式的通項公式的特點:二項展開式每一項中所含的x與2分得的次數(shù)和為6,則根據(jù)條件滿足條件x3的項按3與3分配即可,則展開式中x3的系數(shù)為Ceq\o\al(3,6)×23=160.2.(2023·江西理)(x2-eq\f(2,x3))5展開式中的常數(shù)項為 ()A.80 B.-80 C.40 D.-40答案C解析展開式的通項公式為Tk+1=Ceq\o\al(k,5)(x2)5-k(-eq\f(2,x3))k=Ceq\o\al(k,5)x10-5k(-2)k.由10-5k=0,得k=2,所以常數(shù)項為T2+1=Ceq\o\al(2,5)(-2)2=40.3.(x-eq\r(2)y)10的展開式中x6y4項的系數(shù)是 ()A.840 B.-840 C.210 D.-210答案A解析在通項公式Tr+1=Ceq\o\al(r,10)(-eq\r(2)y)rx10-r中,令r=4,即得(x-eq\r(2)y)10的展開式中x6y4項的系數(shù)為Ceq\o\al(4,10)·(-eq\r(2))4=840.4.(2023·遼寧理)使得(3x+eq\f(1,x\r(x)))n(n∈N*)的展開式中含有常數(shù)項的最小的n為()A.4 B.5 C.6 D.7答案B解析展開式的通項公式為Tk+1=Ceq\o\al(k,n)(3x)n-k·(eq\f(1,x\r(x)))k=Ceq\o\al(k,n)3n-kxn-eq\f(5k,2).由n-eq\f(5k,2)=0得n=eq\f(5k,2),所以當(dāng)k=2時,n有最小值5.5.求(3b+2a)6的展開式中的第3項的系數(shù)為________,二項式系數(shù)為________.答案4860156.(2023·四川理)二項式(x+y)5的展開式中,含x2y3的項的系數(shù)是________(用數(shù)字作答).答案10解析設(shè)二項式(x+y)5的展開式的通項公式為Tr+1,則Tr+1=Ceq\o\al(r,5)x5-ryr,令r=3,則含x2y3的項的系數(shù)是Ceq\o\al(3,5)=10.7.已知在(eq\r(x)+eq\f(2,x2))n的展開式中,第5項的系數(shù)與第3項的系數(shù)之比為56∶3,求展開式中的常數(shù)項.解T5=Ceq\o\al(4,n)(eq\r(x))n-424x-8=16Ceq\o\al(4,n)xeq\f(n-20,2),T3=Ceq\o\al(2,n)(eq\r(x))n-222x-4=4Ceq\o\al(2,n)xeq\f(n-10,2).由題意知,eq\f(16Ceq\o\al(4,n),4Ceq\o\al(2,n))=eq\f(56,3),解得n=10.Tk+1=Ceq\o\al(k,10)(eq\r(x))10-k2kx-2k=2kCeq\o\al(k,10)xeq\f(10-5k,2),令eq\f(10-5k,2)=0,解得k=2,∴展開式中的常數(shù)項為Ceq\o\al(2,10)22=180.二、能力提升8.設(shè)S=(x-1)3+3(x-1)2+3(x-1)+1,則S等于 ()A.(x-1)3 B.(x-2)3C.x3 D.(x+1)3答案C解析S=Ceq\o\al(0,3)(x-1)3+Ceq\o\al(1,3)(x-1)2×1+Ceq\o\al(2,3)(x-1)×12+Ceq\o\al(3,3)×13=[(x-1)+1]3=x3,故選C.9.(2023·新課標(biāo)Ⅱ)已知(1+ax)(1+x)5的展開式中x2的系數(shù)為5,則a等于()A.-4 B.-3 C.-2 D.-1答案D解析(1+ax)(1+x)5的展開式中x2的系數(shù)為Ceq\o\al(2,5)+a·Ceq\o\al(1,5)=5,解得a=-1.10.對于二項式(eq\f(1,x)+x3)n(n∈N*),有以下四種判斷:①存在n∈N*,展開式中有常數(shù)項;②對任意n∈N*,展開式中沒有常數(shù)項;③對任意n∈N*,展開式中沒有x的一次項;④存在n∈N*,展開式中有x的一次項.其中正確的是________.答案①與④解析二項式(eq\f(1,x)+x3)n的展開式的通項公式為Tk+1=Ceq\o\al(k,n)x4k-n,由通項公式可知,當(dāng)n=4k(k∈N*)和n=4k-1(k∈N*)時,展開式中分別存在常數(shù)項和一次項.11.(eq\r(x)+eq\f(2,\r(3,x)))n展開式第9項與第10項二項式系數(shù)相等,求x的一次項系數(shù).解Ceq\o\al(8,n)=Ceq\o\al(9,n),∴n=17,Tr+1=Ceq\o\al(r,17)xeq\f(17-r,2)·2r·x-eq\f(r,3),∴eq\f(17-r,2)-eq\f(r,3)=1,∴r=9,∴T10=Ceq\o\al(9,17)·x4·29·x-3=Ceq\o\al(9,17)·29·x,其一次項系數(shù)為Ceq\o\al(9,17)29.12.已知在(eq\f(1,2)x2-eq\f(1,\r(x)))n的展開式中,第9項為常數(shù)項,求:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)英語語法-形容詞副詞
- 六年級下學(xué)期中隊工作總結(jié)
- 導(dǎo)師制管理制度
- 廠級員工安全培訓(xùn)試題附答案(考試直接用)
- 班組三級安全培訓(xùn)試題加解析答案可打印
- 教育的演講稿模板八篇
- 220kV架空線更換受損絕緣子工程施工方案
- 學(xué)校2024上半年禁毒工作總結(jié)
- 數(shù)學(xué)計劃書范文
- 機關(guān)事業(yè)單位財務(wù)報銷制度
- 大學(xué)動植物檢疫考試(習(xí)題卷7)
- 譯林版九年級上下冊英語單詞表(含音標(biāo))
- 粗粒土大三軸試驗記錄
- 醫(yī)療技術(shù)臨床應(yīng)用動態(tài)評估制度
- 人教版四年級數(shù)學(xué)上冊練習(xí)八課件(含答案)
- 上海市大學(xué)生安全教育(2022級)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 初中數(shù)學(xué)-相似三角形的性質(zhì)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 部編版語文五年級上冊《白鷺》教學(xué)設(shè)計
- 繪本:讓誰先吃好呢
- AUTOCAD完整考試題庫388題(含答案)
- 河南省中小學(xué)高級教師任職資格評審講課答辯題目及答案
評論
0/150
提交評論