版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>12.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為()A. B. C. D.3.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解4.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<05.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°6.已知二次函數(shù),當自變量取時,其相應的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關系不確定7.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.8.圖1~圖4是四個基本作圖的痕跡,關于四條?、?、②、③、④有四種說法:?、偈且設為圓心,任意長為半徑所畫的??;?、谑且訮為圓心,任意長為半徑所畫的?。换、凼且訟為圓心,任意長為半徑所畫的?。换、苁且訮為圓心,任意長為半徑所畫的??;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.19.在同一平面內(nèi),下列說法:①過兩點有且只有一條直線;②兩條不相同的直線有且只有一個公共點;③經(jīng)過直線外一點有且只有一條直線與已知直線垂直;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,其中正確的個數(shù)為(
)A.1個 B.2個 C.3個 D.4個10.單項式2a3b的次數(shù)是()A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,12.已知一組數(shù)據(jù),,,,的平均數(shù)是,那么這組數(shù)據(jù)的方差等于________.13.(2017四川省攀枝花市)若關于x的分式方程無解,則實數(shù)m=_______.14.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.15.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.16.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.求一次函數(shù)關系式;根據(jù)圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.18.(8分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).19.(8分)為了提高服務質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?20.(8分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數(shù)y=x+1圖象上的概率.21.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.22.(10分)某自動化車間計劃生產(chǎn)480個零件,當生產(chǎn)任務完成一半時,停止生產(chǎn)進行自動化程序軟件升級,用時20分鐘,恢復生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?23.(12分)某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?24.已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)方程有兩個不相等的實數(shù)根結(jié)合根的判別式即可得出△=4-4m>0,解之即可得出結(jié)論.【詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數(shù)根”是解題的關鍵.2、C【解析】
先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數(shù)關系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則
當0<x≤2,y=x,
當2<x≤4,y=1,
由以上分析可知,這個分段函數(shù)的圖象是C.
故選C.3、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.4、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.5、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.6、B【解析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側(cè),x=m-1時,y>0,故選B.【點睛】本題考查二次函數(shù)圖象上的點的坐標特征,解題的關鍵是學會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.7、A【解析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.8、C【解析】
根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)?、偈且設為圓心,任意長為半徑所畫的弧,正確;(2)?、谑且訮為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【點睛】此題主要考查了基本作圖,解決問題的關鍵是掌握基本作圖的方法.9、C【解析】
根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過兩點有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個公共點,平行沒有公共點,故②錯誤;③在同一平面內(nèi),經(jīng)過直線外一點有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過直線外一點有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個,故選C.【點睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎概念題,熟記概念是解題的關鍵.10、C【解析】分析:根據(jù)單項式的性質(zhì)即可求出答案.詳解:該單項式的次數(shù)為:3+1=4故選C.點睛:本題考查單項式的次數(shù)定義,解題的關鍵是熟練運用單項式的次數(shù)定義,本題屬于基礎題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、15或255°【解析】如下圖,設直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.12、5.2【解析】分析:首先根據(jù)平均數(shù)求出x的值,然后根據(jù)方差的計算法則進行計算即可得出答案.詳解:∵平均數(shù)為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點睛:本題主要考查的是平均數(shù)和方差的計算法則,屬于基礎題型.明確計算公式是解決這個問題的關鍵.13、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當整式方程無解時,m﹣3=0,m=3;②當整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.14、1.【解析】
直接利用平移的性質(zhì)以及反比例函數(shù)圖象上點的坐標性質(zhì)得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上的性質(zhì),正確得出D點坐標是解題關鍵.15、10【解析】
由正方形性質(zhì)的得出B、D關于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.16、36.【解析】試題分析:∵△AFE和△ADE關于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.三、解答題(共8題,共72分)17、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面積為1.【解析】試題分析:(1)首先根據(jù)A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.(2)由-2x+1-<0,求出x的取值范圍即可.(2)首先分別求出C點、D點的坐標的坐標各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.試題解析:(1)∵A(m,6),B(2,n)兩點在反比例函數(shù)y=(x>0)的圖象上,∴6=,,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴y=-2x+1.(2)由-2x+1-<0,解得0<x<1或x>2.(2)當x=0時,y=-2×0+1=1,∴C點的坐標是(0,1);當y=0時,0=-2x+1,解得x=4,∴D點的坐標是(4,0);∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.18、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.19、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最??;當0<a<3時,取m=50時費用最省.【解析】試題分析:(1)設甲種套房每套提升費用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數(shù)關系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設甲種套房每套提升費用為x萬元,依題意,得625解得:x=25經(jīng)檢驗:x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費用分別為25萬元,28萬元.(2)設甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設提升兩種套房所需要的費用為W.所以當時,費用最少,即第三種方案費用最少.(3)在(2)的基礎上有:當a=3時,三種方案的費用一樣,都是2240萬元.當a>3時,取m=48時費用W最省.當0<a<3時,取m=50時費用最省.考點:1.一次函數(shù)的應用;2.分式方程的應用;3.一元一次不等式組的應用.20、(1)見解析;(1)13【解析】試題分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(jù)(1)的所有結(jié)果,計算出這些結(jié)果中點P在一次函數(shù)圖像上的個數(shù),即可求得點P在一次函數(shù)圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數(shù)圖像上,∴P(點P在一次函數(shù)圖像上)=.考點:用(樹狀圖或列表法)求概率.21、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】
(1)根據(jù)反比例函數(shù)圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數(shù)法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形22、軟件升級后每小時生產(chǎn)1個零件.【解析】分析:設軟件升級前每小時生產(chǎn)x個零件,則軟件升級后每小時生產(chǎn)(1+)x個零件,根據(jù)工作時間=工作總量÷工作效率結(jié)合軟件升級后節(jié)省的時間,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.詳解:設軟件升級前每小時生產(chǎn)x個零件,則軟件升級后每小時生產(chǎn)(1+)x個零件,根據(jù)題意得:,解得:x=60,經(jīng)檢驗,x=60是原方程的解,且符合題意,∴(1+)x=1.答:軟件升級后每小時生產(chǎn)1個零件.點睛:本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.23、(1)A型足球進了40個,B型足球進了60個;(2)當x=60時,y最小=4800元.【解析】
(1)設A型足球x個,則B型足球(100-x)個,根據(jù)該店老板共花費了5200元列方程求解即可;(2)設進貨款為y元,根據(jù)題意列出函數(shù)關系式,根據(jù)B型號足球數(shù)量不少于A型號足球數(shù)量的求出x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)求解即可.【詳解】解:(1)設A型足球x個,則B型足球(100-x)個,∴40x+60(100-x)=5200,解得:x=40,∴100-x=100-40=60個,答:A型足球進了40個,B型足球進了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《動脈瘤性骨囊腫》課件
- 軸承品牌框架合同范例
- 鍍鋅水槽轉(zhuǎn)讓合同范例
- 購房意向定金合同范例
- 酒店廚師長期雇傭合同范例
- 技術(shù)參股合同范例
- 消防銷售合同范例
- 個人購買別墅合同范例
- 服裝租賃合同范例范例pdf
- 農(nóng)村田地運貨合同范例
- 如何防止個人信息被盜用
- 電氣領域知識培訓課件
- 2024-2025學年上學期深圳初中語文七年級期末模擬卷2
- 期末檢測試卷(含答案)2024-2025學年數(shù)學五年級上冊人教版
- 2023年上海商學院招聘筆試真題
- 標準2024項目投資協(xié)議書
- 中建幕墻高處防墜落專項方案方案
- 鎂合金回收與再利用
- 2024年貴州省農(nóng)業(yè)農(nóng)村廳所屬事業(yè)單位招聘人員管理單位遴選500模擬題附帶答案詳解
- 頭皮腫物患者的護理
- 學校食品安全與膳食經(jīng)費管理制度(3篇)
評論
0/150
提交評論