2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設(shè)正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.2.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+b+c3,即aA+bB+cC≥π3(a+b+c),∴aA+bB+cCa+b+c≥π3.3.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填1244.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(

A.(-1,1)

B.(-∞,)∪[1,+∞)

C.(-1,]

D.[,1)答案:C5.設(shè)橢圓(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為,則此橢圓的方程為(

A.

B.

C.

D.答案:B6.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)7.設(shè)與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于與的敘述正確的是()

A.=

B.與同向

C.∥

D.與有相同的位置向量答案:C8.設(shè)a=(4,3),a在b上的投影為522,b在x軸上的投影為2,且|b|≤14,則b為()A.(2,14)B.(2,-27)C.(-2,27)D.(2,8)答案:∵b在x軸上的投影為2,∴設(shè)b=(2,y)∵a在b上的投影為522,∴8+3y4+y2=522∴7y2-96y-28=0,解可得y=-27或14,∵|b|≤14,即4+y2≤144,∴y=-27,b=(2,-27)故選B9.將兩粒均勻的骰子各拋擲一次,觀察向上的點(diǎn)數(shù),計(jì)算:

(1)共有多少種不同的結(jié)果?并試著列舉出來.

(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率;

(3)兩粒骰子點(diǎn)數(shù)之和為4或5的概率.答案:(1)每一粒均勻的骰子拋擲一次,都有6種結(jié)果,根據(jù)分步計(jì)數(shù)原理,所有可能結(jié)果共有6×6=36種.

…(4分)(2)兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的有以下12種:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(5,4),(4,5),(6,6),共有12個(gè)結(jié)果,因此,兩粒骰子點(diǎn)數(shù)之和等于3的倍數(shù)的概率是1236=13.

…(8分)(3)兩粒骰子點(diǎn)數(shù)之和為4或5的有以下7種:(2,2),(1,3),(3,1),(2,3),(3,2),(1,4),(4,1),因此,兩粒骰子點(diǎn)數(shù)之和為4或5的概率為736.

…(12分)10.已知在△ABC和點(diǎn)M滿足

MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×

12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:311.給定兩個(gè)長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].12.設(shè)e1,e2為單位向量.且e1、e2的夾角為π3,若a=e1+3e2,b=2e1,則向量a在b方向上的射影為______.答案:∵e1、e2為單位向量,且e1和e2的夾角θ等于π3,∴e1?e2=1×1×cosπ3=12.∵a=e1+3e2,b=2e1,∴a?b=(e1+3e2)?(2e1)=2e12+6e1?e2=2+3=5.∴a在b上的射影為a?b|b|=52,故為52.13.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.14.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應(yīng)邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:915.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開圖的長方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對角線.如圖所示.16.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C17.200輛汽車經(jīng)過某一雷達(dá)地區(qū),時(shí)速頻率分布直方圖如圖所示,則時(shí)速不低于60km/h的汽車數(shù)量為

______輛.答案:時(shí)速不低于60km/h的汽車的頻率為(0.028+0.01)×10=0.38∴時(shí)速不低于60km/h的汽車數(shù)量為200×0.38=76故為:7618.某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時(shí),等號成立即每次購買20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小.故為:20.19.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.20.某企業(yè)甲、乙、丙三個(gè)生產(chǎn)車間的職工人數(shù)分別為120人,150人,180人,現(xiàn)用分層抽樣的方法抽出一個(gè)容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個(gè)個(gè)體被抽到的概率等于

4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.21.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實(shí)數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項(xiàng)中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時(shí)曲線應(yīng)是雙曲線,故不對;B選項(xiàng)中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負(fù),此時(shí)曲線不存在,故不對;C選項(xiàng)中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負(fù),此時(shí)曲線應(yīng)是焦點(diǎn)在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項(xiàng)中不正確,由C選項(xiàng)的判斷可知D不正確.故選D22.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.23.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B24.在樣本的頻率分布直方圖中,共有11個(gè)小長方形,若中間一個(gè)長方形的面積等于其他十個(gè)小長方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個(gè)長方形的面積S則其他十個(gè)小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A25.已知|OA|=1,|OB|=3,OA?OB=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)OC=mOA+nOB(m、n∈R),則mn等于______.答案:∵|OA|=1,|OB|=3,OA?OB=0,OA⊥OBOC?OB=OC×3cos60°=32OC=3×12

|OC

|OC?OA=|OC|×1×cos30°=32|OC|=1×32|OC|∴OC在x軸方向上的分量為12|OC|OC在y軸方向上的分量為32|OC|∵OC=mOA+nOB=3ni+mj∴12|OC|=3n,32|OC|=m兩式相比可得:mn=3.故為:326.設(shè)x,y,z∈R,且滿足:x2+y2+z2=1,x+2y+3z=14,則x+y+z=______.答案:根據(jù)柯西不等式,得(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)當(dāng)且僅當(dāng)x1=y2=z3時(shí),上式的等號成立∵x2+y2+z2=1,∴(x+2y+3z)2≤14,結(jié)合x+2y+3z=14,可得x+2y+3z恰好取到最大值14∴x1=y2=z3=1414,可得x=1414,y=147,z=31414因此,x+y+z=1414+147+31414=3147故為:314727.點(diǎn)A(-,1)關(guān)于y軸的對稱點(diǎn)A′的坐標(biāo)為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D28.將一根長為3m的繩子在任意位置剪斷,則剪得兩段的長都不小于1m的概率是()A.14B.13C.12D.23答案:記“兩段的長都不小于1m”為事件A,則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,所以事件A發(fā)生的概率

P(A)=13.故選B29.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()

A.互斥事件

B.對立事件

C.不是互斥事件

D.前者都不對答案:D30.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時(shí)a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A31.在殘差分析中,殘差圖的縱坐標(biāo)為______.答案:有殘差圖的定義知道,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重的估計(jì)值,這樣做出的圖形稱為殘差圖.故為:殘差.32.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042933.如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場比賽得分的莖葉圖,中間的數(shù)字表示得分的十位數(shù),下列對乙運(yùn)動(dòng)員的判斷錯(cuò)誤的是()A.乙運(yùn)動(dòng)員得分的中位數(shù)是28B.乙運(yùn)動(dòng)員得分的眾數(shù)為31C.乙運(yùn)動(dòng)員的場均得分高于甲運(yùn)動(dòng)員D.乙運(yùn)動(dòng)員的最低得分為0分答案:根據(jù)題意,可得甲的得分?jǐn)?shù)據(jù):8,14,16,13,23,26,28,30,30,39可得甲得分的平均數(shù)是22.7乙的得分?jǐn)?shù)據(jù):12,15,25,24,21,31,36,31,37,44可得乙得分的平均數(shù)是27.6,31出現(xiàn)了兩次,可得乙得分的眾數(shù)是1將乙得分?jǐn)?shù)據(jù)按從小到大的順序排列,位于中間的兩個(gè)數(shù)是25和31,故中位數(shù)是12(25+31)=28由以上的數(shù)據(jù),可得:乙運(yùn)動(dòng)員得分的中位數(shù)是28,A項(xiàng)是正確的;乙運(yùn)動(dòng)員得分的眾數(shù)為31,B項(xiàng)是正確的;乙運(yùn)動(dòng)員的場均得分高于甲運(yùn)動(dòng)員,C各項(xiàng)是正確的.而D項(xiàng)因?yàn)橐疫\(yùn)動(dòng)員的得分沒有0分,故D項(xiàng)錯(cuò)誤故選:D34.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()

A.

B.

C.2

D.答案:B35.已知函數(shù)f(x)=x+3x+1(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).

(Ⅰ)用數(shù)學(xué)歸納法證明bn≤(3-1)n2n-1;

(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當(dāng)x≥0時(shí),f(x)=1+2x+1≥1.因?yàn)閍1=1,所以an≥1(n∈N*).下面用數(shù)學(xué)歸納法證明不等式bn≤(3-1)n2n-1.(1)當(dāng)n=1時(shí),b1=3-1,不等式成立,(2)假設(shè)當(dāng)n=k時(shí),不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當(dāng)n=k+1時(shí),不等式也成立.根據(jù)(1)和(2),可知不等式對任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對任意n∈N*,Sn<233.36.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π537.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B38.已知三個(gè)數(shù)a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序?yàn)開_____.答案:因?yàn)閍=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.39.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C40.已知函數(shù)f

(x)=logx,則方程()|x|=|f(x)|的實(shí)根個(gè)數(shù)是()

A.1

B.2

C.3

D.2006答案:B41.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()

A.AD與CB

B.OA與OC

C.AC與DB

D.DO與OB

答案:D42.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE可表示為(用a,b、c表示).

()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.43.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進(jìn)而可推斷圓與y軸位置關(guān)系是相切.44.下圖是由A、B、C、D中的哪個(gè)平面圖旋轉(zhuǎn)而得到的(

)答案:A45.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為______.答案:設(shè)所求對稱點(diǎn)為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個(gè)點(diǎn),它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)46.方程x2-y2=0表示的圖形是()

A.兩條相交直線

B.兩條平行直線

C.兩條重合直線

D.一個(gè)點(diǎn)答案:A47.已知兩個(gè)力F1,F(xiàn)2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應(yīng)向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.48.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B49.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.50.如圖,四邊形OABC是邊長為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于

()

A.

B.

C.

D.1

答案:B第2卷一.綜合題(共50題)1.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點(diǎn)P(x,y)在直線y=x+1上,則其經(jīng)變換后的點(diǎn)Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點(diǎn)Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標(biāo)軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點(diǎn)P(x,y),其經(jīng)變換后得到的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時(shí),方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當(dāng)b=0時(shí),由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點(diǎn)P(-bk,0),其經(jīng)變換后的點(diǎn)Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點(diǎn)P(0,k),其經(jīng)變換后得到的點(diǎn)Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)2.(x3+1xx)10的展開式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.3.已知空間四邊形ABCD中,M、G分別為BC、CD的中點(diǎn),則等于()

A.

B.

C.

D.

答案:A4.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A5.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.6.設(shè)函數(shù)g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.7.已知O是正方形ABCD對角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,

(1)與BC相等的向量有

______;

(2)與OB長度相等的向量有

______;

(3)與DA共線的向量有

______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有

CB、BC.8.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;209.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L上距離原點(diǎn)O最近的點(diǎn),則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個(gè)法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)10.{,,}=是空間向量的一個(gè)基底,設(shè)=+,=+,=+,給出下列向量組:①{,,},②{,},③{,,},④{,,},其中可以作為空間向量基底的向量組有()組.

A.1

B.2

C.3

D.4答案:C11.給定兩個(gè)長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng),得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].12.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:113.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()

A.

B.

C.±

D.±答案:C14.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22

×3=33故為:33.15.已知單位向量a,b的夾角為,那么|a+2b|=()

A.2

B.

C.2

D.4答案:B16.設(shè)是的相反向量,則下列說法一定錯(cuò)誤的是()

A.∥

B.與的長度相等

C.是的相反向量

D.與一定不相等答案:D17.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點(diǎn)在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點(diǎn)在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.18.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.19.

如圖,平面內(nèi)向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D20.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P.若PB=1,PD=3,則BCAD的值為______.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.21.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:322.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則動(dòng)點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動(dòng)點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動(dòng)點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.23.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立24.方程ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C25.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.26.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過

B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=()

A.30°

B.45°

C.50°

D.60°

答案:D27.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).

(I)求橢圓C的離心率:

(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且2|AQ|2=1|AM|2+1|AN|2,求點(diǎn)Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設(shè)點(diǎn)Q的坐標(biāo)為(x,y)(1)當(dāng)直線l與x軸垂直時(shí),直線l與橢圓C交于(0,1)、(0,-1)兩點(diǎn),此時(shí)點(diǎn)Q的坐標(biāo)為(0,2-355)(2)當(dāng)直線l與x軸不垂直時(shí),可設(shè)其方程為y=kx+2,因?yàn)镸,N在直線l上,可設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1

2,|AN|2=(1+k2)x2

2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1

2+1(1+k2)x2

2,即2x2=1x1

2+1x2

2=(x1+x2)2-2x1x2x1

2x2

2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡得x2=1810k2-3…③因?yàn)辄c(diǎn)Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點(diǎn)Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分28.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯(cuò)誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.29.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.30.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B31.(不等式選講選做題)已知a,b,c∈R+,且a+b+c=1,則3a+1+3b+1+3c+1的最大值為______.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1),即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此3a+1+3b+1+3c+1的最大值為32.故為:3232.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.33.選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個(gè)等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π34.函數(shù)y=5x,x∈N+的值域是()A.RB.N+C.ND.{5,52,53,54,…}答案:解析:因?yàn)楹瘮?shù)y=5x,x∈N+的定義域?yàn)檎麛?shù)集N+,所以當(dāng)自變量x取1,2,3,4,…時(shí),其相應(yīng)的函數(shù)值y依次是5,52,53,54,….因此,函數(shù)y=5x,x∈N+的值域是{5,52,53,54,…}.故選D.35.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()

A.2

B.

C.

D.答案:D36.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.37.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個(gè)向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B38.已知在△ABC和點(diǎn)M滿足

MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×

12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:339.正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時(shí),⊙A與⊙C有2個(gè)交點(diǎn)(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B40.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.41.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于()

A.

B.

C.

D.答案:C42.設(shè)A(3,4),在x軸上有一點(diǎn)P(x,0),使得|PA|=5,則x等于()

A.0

B.6

C.0或6

D.0或-6答案:C43.如圖,⊙O中弦AB,CD相交于點(diǎn)P,已知AP=3,BP=2,CP=1,則DP=()

A.3

B.4

C.5

D.6答案:D44.賦值語句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.將n的值賦給n+1

D.將n的值增加1,再賦給n,即n的值增加1答案:D45.對于任意空間四邊形,試證明它的一組對邊中點(diǎn)的連線與另一組對邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.46.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.47.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C48.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過定點(diǎn)

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C49.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.50.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點(diǎn)D,延長DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長.答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′第3卷一.綜合題(共50題)1.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=12.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.3.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是鈍角”時(shí),則假設(shè)的內(nèi)容是()

A.三角形中有兩個(gè)內(nèi)角是鈍角

B.三角形中有三個(gè)內(nèi)角是鈍角

C.三角形中至少有兩個(gè)內(nèi)角是鈍角

D.三角形中沒有一個(gè)內(nèi)角是鈍角答案:C4.有以下命題:①如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;②O,A,B,C為空間四點(diǎn),且向量不構(gòu)成空間的一個(gè)基底,那么點(diǎn)O,A,B,C一定共面;③已知向量是空間的一個(gè)基底,則向量,也是空間的一個(gè)基底.其中正確的命題是[

]A.①②

B.①③

C.②③

D.①②③答案:C5.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填1246.已知△ABC是邊長為4的正三角形,D、P是△ABC內(nèi)部兩點(diǎn),且滿足AD=14(AB+AC),AP=AD+18BC,則△APD的面積為______.答案:取BC的中點(diǎn)E,連接AE,根據(jù)△ABC是邊長為4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),則點(diǎn)D為AE的中點(diǎn),AD=3取AF=18BC,以AD,AF為邊作平行四邊形,可知AP=AD+18BC=AD+AF而△APD為直角三角形,AF=12∴△APD的面積為12×12×3=34故為:347.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B8.2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米.

某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別PM2.5濃度

(微克/立方米)頻數(shù)(天)頻率

第一組(0,25]50.25第二組(25,50]100.5第三組(50,75]30.15第四組(75,100)20.1(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率;

(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由.答案:(Ⅰ)

設(shè)PM2.5的24小時(shí)平均濃度在(50,75]內(nèi)的三天記為A1,A2,A3,PM2.5的24小時(shí)平均濃度在(75,100)內(nèi)的兩天記為B1,B2.所以5天任取2天的情況有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10種.

…(4分)其中符合條件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6種.

…(6分)所以所求的概率P=610=35.

…(8分)(Ⅱ)去年該居民區(qū)PM2.5年平均濃度為:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因?yàn)?0>35,所以去年該居民區(qū)PM2.5年平均濃度不符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn),故該居民區(qū)的環(huán)境需要改進(jìn).

…(12分)9.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓10.某科目考試有30道題每小題有三個(gè)選項(xiàng),每題2分,另有20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè)答案,某人隨機(jī)去選答案,則平均能得______分.答案:由題意,30道題每小題有三個(gè)選項(xiàng),每題2分,每題只有一個(gè),某人隨機(jī)去選,則可得2×30×13=20分;20道題,每題有四個(gè)選項(xiàng)每題3分,每題只有一個(gè),某人隨機(jī)去選,則可得3×20×14=15分故平均能得35分故為:35分.11.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點(diǎn)M在曲線C1上,線段OM(O為坐標(biāo)原點(diǎn))與曲線C1的另一個(gè)交點(diǎn)為N,若曲線C2上存在一點(diǎn)P,且點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等,點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,則點(diǎn)P的坐標(biāo)為______.答案:設(shè)點(diǎn)M的坐標(biāo)為(m,am),點(diǎn)N的坐標(biāo)為(n,an)∵點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等∴點(diǎn)P的坐標(biāo)為(am,m)∵點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,∴m=2n而O、M、N三點(diǎn)共線則amm=ann=

am2m2解得:am=4即m=loga4∴點(diǎn)P的坐標(biāo)為(4,loga4)故為:(4,loga4)12.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.13.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點(diǎn)E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C14.若A=1324,B=-123-3,則3A-B=______.答案:∵A=1324,B=-123-3,則3A-B=31324--123-3=39612--123-3=47315.故為:47315.15.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}16.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為017.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個(gè)隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.18.已知f(x+1)=x2+2x+3,則f(2)的值為______.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.19.如圖:一個(gè)力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.20.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()

A.13

B.13.5

C.14

D.14.5答案:A21.三個(gè)數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.22.甲、乙兩位運(yùn)動(dòng)員在5場比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績穩(wěn)定B..x甲>.x乙;乙比甲成績穩(wěn)定C..x甲<.x乙;甲比乙成績穩(wěn)定D..x甲<.x乙;乙比甲成績穩(wěn)定答案:5場比賽甲的得分為16、17、28、30、34,5場比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績穩(wěn)定故選D.23.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.24.在空間直角坐標(biāo)系O-xyz中,點(diǎn)P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為______.答案:設(shè)所求對稱點(diǎn)為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個(gè)點(diǎn),它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點(diǎn)的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)25.在數(shù)列{an}中,a1=1,an+1=2a

n2+an(n∈N*),

(1)計(jì)算a2,a3,a4

(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.答案:(1):a2=2a

12+a1=23,a3=2a

22+a2=24,a4=2a

32+a3=25,(2):猜想an=2n+1下面用數(shù)學(xué)歸納法證明這個(gè)猜想.①當(dāng)n=1時(shí),a1=1,命題成立.②假設(shè)n=k時(shí)命題成立,即ak=2k+1當(dāng)n=k+1時(shí)ak+1=2a

k2+ak=2×2k+12+2k+1(把假設(shè)作為條件代入)=42(k+1)+2=2(k+1)+1由①②知命題對一切n∈N*均成立.26.若雙曲線與橢圓x216+y225=1有相同的焦點(diǎn),與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設(shè)所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點(diǎn)∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)27.如圖,P-ABCD是正四棱錐,ABCD-A1B1C1D1是正方體,其中AB=2,PA=6.

(1)求證:PA⊥B1D1;

(2)求平面PAD與平面BDD1B1所成銳二面角的余弦值.答案:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2),P(1,1,4).(1)證明:∵AP=(-1,1,2),D1B1=(2,2,0),∴AP?D1B1=-2+2+0=0,∴PA⊥B1D1.(2)平面BDD1B1的法向量為AC=(-2,2,0).DA=(2,0,0),OP=(1,1,2).設(shè)平面PAD的法向量為n=(x,y,z),則n⊥DA,n⊥DP.∴2x=0x+y+2z=0∴x=0y=-2z.取n=(0,-2,1),設(shè)所求銳二面角為θ,則cosθ=|n?AC||n|?|AC|=|0-4+0|22×5=105.28.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個(gè)單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B29.設(shè)隨機(jī)變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()

A.0

B.1

C.μ

D.μ答案:C30.過直線x+y-22=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點(diǎn)P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)31.給出的下列幾個(gè)命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實(shí)數(shù)λ,使

其中真命題的個(gè)數(shù)為()

A.0

B.1

C.2

D.3答案:B32.某種肥皂原零售價(jià)每塊2元,凡購買2塊以上(包括2塊),商場推出兩種優(yōu)惠銷售辦法。第一種:一塊肥皂按原價(jià),其余按原價(jià)的七折銷售;第二種:全部按原價(jià)的八折銷售。你在購買相同數(shù)量肥皂的情況下,要使第一種方法比第二種方法得到的優(yōu)惠多,最少需要買(

)塊肥皂。

A.5

B.2

C.3

D.4答案:D33.設(shè)a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).34.有外形相同的球分裝三個(gè)盒子,每盒10個(gè).其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A、3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個(gè)球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個(gè)球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A35.下面為一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A36.一圓形紙片的圓心為點(diǎn)O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一定點(diǎn),點(diǎn)A是圓周上一點(diǎn).把紙片折疊使點(diǎn)A與Q重合,然后展平紙片,折痕與OA交于P點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P的軌跡是()A.圓B.橢圓C.雙曲線D.拋物線答案:如圖所示,由題意可知:折痕l為線段AQ的垂直平分線,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí)點(diǎn)P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論