版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年湖南城建職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.中心在原點(diǎn),一個焦點(diǎn)坐標(biāo)為(0,5),短軸長為4的橢圓方程為______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在y軸上,設(shè)為y2a2+x2b2=1∵橢圓的焦點(diǎn)坐標(biāo)為(0,5),短軸長為4,∴c=5,b=2∵a2=b2+c2,∴橢圓的長半軸長為a=4+25=29∴此橢圓的標(biāo)準(zhǔn)方程為y229+x24=1故為y229+x24=12.一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點(diǎn)的兩條面上的對角線∴AB與CD所成的角為60°故選D.3.某飲料公司招聘了一名員工,現(xiàn)對其進(jìn)行一項(xiàng)測試,以便確定工資級別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=22804.如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()
A.30°
B.40°
C.80°
D.70°
答案:C5.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(
)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)6.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動點(diǎn)M滿足|MF1|+|MF2|=6,則動點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.7.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號可能是()
A.5,10,15,20,25
B.2,4,8,16,32
C.1,2,3,4,5
D.7,17,27,37,47答案:D8.復(fù)數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復(fù)平面上的對應(yīng)點(diǎn)只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復(fù)數(shù)Z對應(yīng)的點(diǎn)的實(shí)部和虛部都小于零,∴復(fù)數(shù)在第三象限,故選C.9.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.10.設(shè)O為坐標(biāo)原點(diǎn),給定一個定點(diǎn)A(4,3),而點(diǎn)B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()
A.
B.
C.
D.答案:B11.已知,,且與垂直,則實(shí)數(shù)λ的值為()
A.±
B.1
C.-
D.答案:D12.
以下四組向量中,互相平行的有()組.
A.一
B.二
C.三
D.四答案:D13.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時間內(nèi)有3班公共汽車,它們開車的時刻分別是7:40、7:50和8:00,甲、乙兩人約定,見車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時刻是互相不牽連的,且每人在7:20至8:00時的任何時刻到達(dá)車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.14.為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)下面的頻率分布表,解答下列問題:
序號
(i)分組
(分?jǐn)?shù))本組中間值
(Gi)頻數(shù)
(人數(shù))頻率
(Fi)1(60,70)65①0.122[70,80)7520②3[80,90)85③0.244[90,100]95④⑤合
計501(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于85分的同學(xué)能獲獎,請估計在參賽的800名學(xué)生中大概有多少同學(xué)獲獎?
(3)請根據(jù)頻率分布表估計該校高二年級參賽的800名同學(xué)的平均成績.答案:(1)①為6,②為0.4,③為12,④為12⑤為0.24.(5分)(2)(12×0.24+0.24)×800=288,即在參加的800名學(xué)生中大概有288名同學(xué)獲獎.(9分)(3)65×0.12+75×0.4+85×0.24+95×0.24=81(4)估計平均成績?yōu)?1分.(12分)15.過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點(diǎn)時,方程為y=4x,符合題意;當(dāng)直線不過原點(diǎn)時,設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點(diǎn)A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.16.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點(diǎn),它的一個焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.17.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()
A.
B.
C.
D.
答案:A18.已知直線l:kx-y+1+2k=0.
(1)證明l經(jīng)過定點(diǎn);
(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時直線l的方程;
(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(diǎn)(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當(dāng)且僅當(dāng)k=12時等號成立,此時面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(diǎn)(-2,1),可得當(dāng)斜率k>0或k=0時,直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).19.一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一個定點(diǎn),點(diǎn)A是圓周上一動點(diǎn),把紙片折疊使得點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A20.若直線l經(jīng)過點(diǎn)A(-1,1),且一個法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=021.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D22.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.23.已知在△ABC和點(diǎn)M滿足
MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:324.當(dāng)a≠0時,y=ax+b和y=bax的圖象只可能是()
A.
B.
C.
D.
答案:A25.已知兩點(diǎn)P1(2,-1)、P2(0,5),點(diǎn)P在P1P2延長線上,且滿足P1P2=-2PP2,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)分點(diǎn)P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).26.已知曲線C的參數(shù)方程是(θ為參數(shù)),曲線C不經(jīng)過第二象限,則實(shí)數(shù)a的取值范圍是()
A.a(chǎn)≥2
B.a(chǎn)>3
C.a(chǎn)≥1
D.a(chǎn)<0答案:A27.直線3x+5y-1=0與4x+3y-5=0的交點(diǎn)是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C28.下列說法正確的是()
A.互斥事件一定是對立事件,對立事件不一定是互斥事件
B.互斥事件不一定是對立事件,對立事件一定是互斥事件
C.事件A,B中至少有一個發(fā)生的概率一定比A,B中恰有一個發(fā)生的概率大
D.事件A,B同時發(fā)生的概率一定比A,B中恰有一個發(fā)生的概率小答案:B29.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時,公路總長最小,最小值為9.806千米…(16分)30.用三段論的形式寫出下列演繹推理.
(1)若兩角是對頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對頂角;
(2)矩形的對角線相等,正方形是矩形,所以,正方形的對角線相等.答案:(1)兩個角是對頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對頂角.結(jié)論(2)每一個矩形的對角線相等,大前提正方形是矩形,小前提正方形的對角線相等.結(jié)論31.設(shè)集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.32.如圖的曲線是指數(shù)函數(shù)y=ax的圖象,已知a的值取,,,則相應(yīng)于曲線①②③④的a的值依次為()
A.,,,
B.,,,
C.,,,
D.,,,
答案:A33.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根
(1)證明四點(diǎn)共圓
(2)若求四點(diǎn)所在圓的半徑答案:(1)見解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗?,?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時,方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評:此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。34.2005年10月,我國載人航天飛船“神六”飛行獲得圓滿成功.已知“神六”飛船變軌前的運(yùn)行軌道是一個以地心為焦點(diǎn)的橢圓,飛船近地點(diǎn)、遠(yuǎn)地點(diǎn)離地面的距離分別為200公里、250公里.設(shè)地球半徑為R公里,則此時飛船軌道的離心率為______.(結(jié)果用R的式子表示)答案:(I)設(shè)橢圓的方程為x2a2+y2b2=1由題設(shè)條件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25則此時飛船軌道的離心率為25225+R故為:25225+R.35.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C36.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230437.設(shè)P點(diǎn)在x軸上,Q點(diǎn)在y軸上,PQ的中點(diǎn)是M(-1,2),則|PQ|等于______.答案:設(shè)P(a,0),Q(0,b),∵PQ的中點(diǎn)是M(-1,2),∴由中點(diǎn)坐標(biāo)公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故為:2538.下列賦值語句中正確的是()
A.m+n=3
B.3=i
C.i=i2+1
D.i=j=3答案:C39.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點(diǎn)分別在l1,l2,l3上,則△ABC的邊長是______.答案:如圖,過A,C作AE,CF垂直于L2,點(diǎn)E,F(xiàn)是垂足,將Rt△BCF繞點(diǎn)B逆時針旋轉(zhuǎn)60°至Rt△BAD處,延長DA交L2于點(diǎn)G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221340.命題“三角形中最多只有一個內(nèi)角是直角”的結(jié)論的否定是()
A.有兩個內(nèi)角是直角
B.有三個內(nèi)角是直角
C.至少有兩個內(nèi)角是直角
D.沒有一個內(nèi)角是直角答案:C41.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時,常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對解決實(shí)際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.42.如圖,平面內(nèi)有三個向量OA,OB,OC,其中OA與OB的夾角為120°,OA與OC的夾角為30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如圖,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.43.下列命題中,錯誤的是()
A.平行于同一條直線的兩個平面平行
B.平行于同一個平面的兩個平面平行
C.一個平面與兩個平行平面相交,交線平行
D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A44.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____45.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時,復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B46.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()
A.平行
B.重合
C.相交
D.以上答案都不對答案:A47.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.48.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A49.下列各圖象中,哪一個不可能是函數(shù)
y=f(x)的圖象()A.
B.
C.
D.
答案:函數(shù)表示每個輸入值對應(yīng)唯一輸出值的一種對應(yīng)關(guān)系.選項(xiàng)D,對于x=1時有兩個輸出值與之對應(yīng),故不是函數(shù)圖象故選D.50.算法框圖中表示判斷的是()A.
B.
C.
D.
答案:∵在算法框圖中,表示判斷的是菱形,故選B.第2卷一.綜合題(共50題)1.如圖,在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若AP=λa+μb,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比S平行四邊形ANPMS△ABC.答案:(Ⅰ)∵在△ABC中,設(shè)AB=a,AC=b,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.AP=AR+AC2,AR=AQ+AB2,AQ=12AP,消去AR,AQ∵AP=λa+μb,可得AP=12(AQ+AB2)+12AC=14×12AP+14AB+12AC,可得AP=27AB+47AC=λa+μb,∴λ=27μ=47;(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,∵得AP=27AB+47AC,∴S平行四邊形ANPMS平行四邊形ABC=|AN|?|AM|?sin∠CAB12|AB|?|AC|?sin∠CAB=2?|AN||AB|?|AM||AC|=2×27×47=1649;2.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因?yàn)锳C、BC的長分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故為:1653.已知平行四邊形的三個頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).4.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A5.已知棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個頂點(diǎn)(不過棱)和球心所得截面如(3)圖所示;(4)棱長都相等的正三棱錐和球心不可能在同一個面上,所以(4)是錯誤的.故選C.6.甲、乙兩人對一批圓形零件毛坯進(jìn)行成品加工.根據(jù)需求,成品的直徑標(biāo)準(zhǔn)為100mm.現(xiàn)從他們兩人的產(chǎn)品中各隨機(jī)抽取5件,測得直徑(單位:mm)如下:
甲:105
102
97
96
100
乙:100
101
102
97
100
(I)分別求甲、乙的樣本平均數(shù)與方差,并由此估計誰加工的零件較好?
(Ⅱ)若從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件,試求這2件產(chǎn)品中至少有一件產(chǎn)品直徑為100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,據(jù)此估計乙加工的零件好;(Ⅱ)從乙樣本的5件產(chǎn)品中再次隨機(jī)抽取2件的全部結(jié)果有如下10種:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).設(shè)事件A為“其中至少有一件產(chǎn)品直徑為100”,則時間A有7種.故P(A)=710.7.設(shè)二項(xiàng)式(33x+1x)n的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對于二項(xiàng)式(33x+1x)n的展開式的所有二項(xiàng)式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項(xiàng)系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.8.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A9.已知正方形ABCD的邊長為1,=,=,=,則的模等于(
)
A.0
B.2+
C.
D.2答案:D10.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3411.設(shè)橢圓=1(a>b>0)的離心率為,右焦點(diǎn)為F(c,0),方程ax2+bx-c=0的兩個實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2)()
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2上
C.必在圓x2+y2=2外
D.以上三種情形都有可能答案:A12.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.
(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;
(2)若A、B兩個袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個球,A、B兩個袋子中的球數(shù)之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.13.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對a1,a2,…,a2n+1中任意2n個數(shù),存在一種分法可將其分為兩組,每組n個數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時,從中任意2n個數(shù),將其分為兩組,每組n個數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個數(shù)中,將其分為兩組,每組n個數(shù),則a1在的那個組所有元素的和與另一個組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時,a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.14.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α15.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B16.不等式|x+3|-|x-1|≤a2-3a對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A17.已知集合A={0,1,2},集合B={x|x=2a,a∈A},則A∩B=()A.{0}B.{2}C.{0,2}D.{1,4}答案:B={0,2,4},∴A∩B={0,2},故選C18.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個二個試點(diǎn)為好點(diǎn),則第三個試點(diǎn)應(yīng)選在(
)。答案:123619.設(shè)空間兩個不同的單位向量
a=(x1,y1,0),
b=(x2,y2,0)與向量
c=(1,1,1)的夾角都等于45°.
(1)求x1+y1和x1y1的值;
(2)求<
a,
b>的大小.答案:(1)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?
c|a|?
|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°20.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M(jìn)、G分別是BC、CD的中點(diǎn),∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C21.如圖,在平行四邊形OABC中,點(diǎn)C(1,3).
(1)求OC所在直線的斜率;
(2)過點(diǎn)C做CD⊥AB于點(diǎn)D,求CD所在直線的方程.答案:(1)∵點(diǎn)O(0,0),點(diǎn)C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.22.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.23.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且函數(shù)f(x)=x2+4x+ξ沒有零點(diǎn)的概率為,則μ為()
A.1
B.4
C.2
D.不能確定答案:B24.賦值語句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對答案:B25.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點(diǎn),F(xiàn)是橢圓的一個焦點(diǎn),則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點(diǎn),F(xiàn)是橢圓的一個焦點(diǎn),則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.26.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C27.能較好地反映一組數(shù)據(jù)的離散程度的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.極差答案:C28.已知橢圓的參數(shù)方程為(?為參數(shù)),點(diǎn)M在橢圓上,點(diǎn)O為原點(diǎn),則當(dāng)?=時,OM的斜率為()
A.1
B.2
C.
D.2答案:D29.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B30.一個水平放置的平面圖形,其斜二測直觀圖是一個等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+231.在平面直角坐標(biāo)系xOy中,橢圓x2a2+y2b2=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑作圓M,若過P(a2c,0)作圓M的兩條切線相互垂直,則橢圓的離心率為______.答案:設(shè)切線PA、PB互相垂直,又半徑OA垂直于PA,所以△OAP是等腰直角三角形,故a2c=2a,解得e=ca=22,故為22.32.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()
A.
B.
C.
D.答案:C33.已知=(1,2),=(x,1),當(dāng)(+2)⊥(2-)時,實(shí)數(shù)x的值為(
)
A.6
B.2
C.-2
D.或-2答案:D34.下列各圖形不是函數(shù)的圖象的是()A.
B.
C.
D.
答案:由函數(shù)的概念,B中有的x,存在兩個y與x對應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B35.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設(shè)另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm36.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.37.利用計算機(jī)隨機(jī)模擬方法計算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運(yùn)行以下算法步驟:
第一步:利用計算機(jī)產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機(jī)數(shù)a,b;
第二步:對隨機(jī)數(shù)a,b實(shí)施變換:答案:根據(jù)題意可得,點(diǎn)落在y=x2與y=4所圍成的區(qū)域Ω的點(diǎn)的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.38.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B39.正態(tài)曲線下、橫軸上,從均值到+∞的面積為______答案:由正態(tài)曲線的對稱性特點(diǎn)知,曲線與x軸之間的面積為1,所以從均數(shù)到的面積為整個面積的一半,即50%.填:0.5.40.將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.答案:y=-cos2x,
=(,0)解析:將y=sin2x的圖象向右按作最小的平移,使平移后的圖象在[k,k+](kz)上遞減,試求平移后的函數(shù)解析式和.41.已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,則以三條邊長分別為|a|,|b|,|c|所構(gòu)成的三角形的形狀是______.答案:直線ax+by+c=0(abc≠0)與圓x2+y2=1相離,即|c|a2+b2>
1即|c|2>a2+b2三角形是鈍角三角形.故為:鈍角三角形.42.已知在△ABC和點(diǎn)M滿足
MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:343.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D44.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1345.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.46.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()
A.∠AED=∠B
B.
C.
D.DE∥BC
答案:C47.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨(dú)立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D48.設(shè)A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3549.若隨機(jī)變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D50.如果方程x2+(m-1)x+m2-2=0的兩個實(shí)根一個小于1,另一個大于1,那么實(shí)數(shù)m的取值范圍是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C第3卷一.綜合題(共50題)1.已知函數(shù)f(x)=ax2+(a+3)x+2在區(qū)間[1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是______.答案:∵f(x)=ax2+(a+3)x+2,∴f′(x)=2ax+a+3,∵函數(shù)f(x)=ax2+x+1在區(qū)間[1,+∞)上為增函數(shù),∴f′(x)=2ax+a+3≥0在區(qū)間[1,+∞)恒成立.∴a≥02a×1+a+3≥0,解得a≥0,故為:a≥0.2.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).3.已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),
(1)求函數(shù)f(x)的解析式;
(2)求f(5);
(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.答案:(1)設(shè)正整數(shù)指數(shù)函數(shù)為f(x)=ax(a>0,a≠1,x∈N+),因?yàn)楹瘮?shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),所以f(3)=27,即a3=27,解得a=3,所以函數(shù)f(x)的解析式為f(x)=3x(x∈N+).(2)由f(x)=3x(x∈N+),可得f(5)=35=243.(3)∵f(x)的定義域?yàn)镹+,且在定義域上單調(diào)遞增,∴f(x)有最小值,最小值是f(1)=3;f(x)無最大值.解析:已知正整數(shù)指數(shù)函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,27),(1)求函數(shù)f(x)的解析式;(2)求f(5);(3)函數(shù)f(x)有最值嗎?若有,試求出;若無,說明原因.4.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.5.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點(diǎn),且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:56.已知曲線C的參數(shù)方程是(θ為參數(shù)),曲線C不經(jīng)過第二象限,則實(shí)數(shù)a的取值范圍是()
A.a(chǎn)≥2
B.a(chǎn)>3
C.a(chǎn)≥1
D.a(chǎn)<0答案:A7.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)
=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.8.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.9.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數(shù)是1故今天為星期六,則今天后的第22010天是星期日故選D10.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿足條件,執(zhí)行S=1+2×15=31,此時31是要輸出的S值,說明i不滿足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.11.給定橢圓C:x2a2+y2b2=1(a>b>0),稱圓心在原點(diǎn)O、半徑是a2+b2的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點(diǎn)為F(2,0),其短軸的一個端點(diǎn)到點(diǎn)F的距離為3.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點(diǎn),求l1,l2的方程;
(3)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求AB?AD的取值范圍.答案:(1)由題意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴橢圓C的方程為x23+y2=1,其“準(zhǔn)圓”的方程為x2+y2=4;(2)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),設(shè)過點(diǎn)P且與橢圓相切的直線l的方程為my=x-2,聯(lián)立my=x-2x23+y2=1,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直線l1、l2的方程分別為:y=x-2,y=-x+2.(3)由“準(zhǔn)圓”的方程為x2+y2=4,令y=0,解得x=±2,取點(diǎn)A(2,0).設(shè)點(diǎn)B(x0,y0),則D(x0,-y0).∴AB?AD=(x0-2,y0)?(x0-2,-y0)=(x0-2)2-y02,∵點(diǎn)B在橢圓x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD?AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD?AB<7+43,即AD?AB的取值范圍為[0,7+43)12.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點(diǎn)F作FM∥AC、FN∥AB,分別交AB、AC于點(diǎn)M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A13.計算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x514.對于空間中的三個向量,
,
,它們一定是()
A.共面向量
B.共線向量
C.不共面向量
D.以上均不對答案:A15.下列程序表示的算法是輾轉(zhuǎn)相除法,請在空白處填上相應(yīng)語句:
(1)處填______;
(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.16.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B17.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()
A.-
B.-6
C.6
D.答案:C18.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級各類中小學(xué)每年都要在體育教學(xué)中實(shí)施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.
現(xiàn)從佛山市某校高一年級的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測試成績?nèi)缦拢?/p>
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計該校高一年級體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示);
(3)請你依據(jù)所給數(shù)據(jù)和上述廣東省標(biāo)準(zhǔn),對該校高一學(xué)生的體能素質(zhì)給出一個簡短評價.答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:
分組
頻數(shù)
頻率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[80,85)
10
1030[85,90)
6
630[90,95)
3
330[95,100)
1
130根據(jù)抽樣,估計該校高一學(xué)生中體能素質(zhì)為優(yōu)秀的有1030×900=300人
…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987
…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學(xué)期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計該校高一學(xué)生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學(xué)生體能素質(zhì)良好,但仍有待進(jìn)一步提高,還需積極參加體育鍛煉.19.如圖所示,I為△ABC的內(nèi)心,求證:△BIC的外心O與A、B、C四點(diǎn)共圓.答案:證明:連接OB、BI、OC,由O是外心知∠IOC=2∠IBC.由I是內(nèi)心知∠ABC=2∠IBC.從而∠IOC=∠ABC.同理∠IOB=∠ACB.而∠A+∠ABC+∠ACB=180°,故∠BOC+∠A=180°,于是O、B、A、C四點(diǎn)共圓.20.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點(diǎn).
(1)求證:平面B1EF⊥平面BDD1B1;
(2)求點(diǎn)D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)
建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)
由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.21.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個數(shù)問題,所以滿足題目條件的集合B共有22=4個.故選擇C.22.求下列函數(shù)的定義域及值域.
(1)y=234x+1;
(2)y=4-8x.答案:(1)要使函數(shù)y=234x+1有意義,只需4x+1≠0,即x≠-14,所以,函數(shù)的定義域?yàn)閧x|x≠-14}.設(shè)y=2u,u=34x+1≠0,則u>0,由函數(shù)y=2u,得y≠20=1,所以函數(shù)的值域?yàn)閧y|0<y且y≠1}.(2)由4-8x≥0,得x≤23,所以函數(shù)的定義域?yàn)閧x|x≤23}.因0≤4-8x<4,所以0≤y<2,所以函數(shù)的值域?yàn)閇0,2).23.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.24.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實(shí)數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:025.在某項(xiàng)體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.26.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號與不等號的關(guān)系。27.設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.28.將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進(jìn)行平移,使得到的圖形與拋物線的兩個交點(diǎn)關(guān)于原點(diǎn)對稱,試求平移后的圖形對應(yīng)的函數(shù)解析式.29.一個十二面體共有8個頂點(diǎn),其中2個頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為______.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為430.已知不等式a≤對x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.31.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:1232.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=133.同時擲兩顆骰子,得到的點(diǎn)數(shù)和為4的概率是______.答案:同時擲兩顆骰子得到的點(diǎn)數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠色有機(jī)肥料購銷合同
- 獵頭招聘服務(wù)合同權(quán)益法律服務(wù)
- 羊絨毛皮購銷合同
- 工程居間合作合同范本
- 代理人權(quán)益保證函
- 散裝貨物運(yùn)輸合同
- 企業(yè)團(tuán)隊建設(shè)培訓(xùn)條款
- 商業(yè)服務(wù)合同終止
- 報效國家的軍人諾言
- 汽車租賃合同協(xié)議范本
- 軍隊文職(新聞專業(yè))招聘考試(重點(diǎn))題庫200題(含答案解析)
- 人教版(2024)數(shù)學(xué)七年級上冊期末測試卷(含答案)
- 大部分分校:地域文化形考任務(wù)三-國開(CQ)-國開期末復(fù)習(xí)資料
- 2024年國家保密培訓(xùn)
- 2024年全新初二生物上冊期末試卷及答案(人教版)
- 大學(xué)生心理健康與發(fā)展學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 西方經(jīng)濟(jì)學(xué)考試題庫(含參考答案)
- 古希臘神話智慧樹知到期末考試答案章節(jié)答案2024年上海外國語大學(xué)賢達(dá)經(jīng)濟(jì)人文學(xué)院
- 生活中的社會學(xué)智慧樹知到期末考試答案章節(jié)答案2024年西安交通大學(xué)
- ISO28000:2022供應(yīng)鏈安全管理體系
- 購買二手船流程介紹及經(jīng)驗(yàn)總結(jié)
評論
0/150
提交評論