版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年福州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)問:此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.2.關(guān)于直線a,b,c以及平面M,N,給出下面命題:
①若a∥M,b∥M,則a∥b
②若a∥M,b⊥M,則b⊥a
③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M
④若a⊥M,a∥N,則M⊥N,
其中正確命題的個(gè)數(shù)為()
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:C3.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長(zhǎng)為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:434.下面程序運(yùn)行后,輸出的值是()
A.42
B.43
C.44
D.45
答案:C5.對(duì)變量x、y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖2.由這兩個(gè)散點(diǎn)圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)
D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)答案:C6.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.7.用反證法證明“3是無理數(shù)”時(shí),第一步應(yīng)假設(shè)“______.”答案:反證法肯定題設(shè)而否定結(jié)論,從而得出矛盾,題設(shè)“3是無理數(shù)”,那么假設(shè)為:3是有理數(shù).故為3是有理數(shù).8.已知AB和CD是曲線(t為參數(shù))的兩條相交于點(diǎn)P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)將曲線(t為參數(shù))化為普通方程,并說明它表示什么曲線;
(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設(shè)直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數(shù)方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個(gè)不相等的實(shí)數(shù)解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。9.已知=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C10.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).11.方程x2-(k+2)x+1-3k=0有兩個(gè)不等實(shí)根x1,x2,且0<x1<1<x2<2,則實(shí)數(shù)k的取值范圍為______.答案:構(gòu)造函數(shù)f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有兩個(gè)不等實(shí)根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴實(shí)數(shù)k的取值范圍為(0,15)故為:(0,15)12.在邊長(zhǎng)為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.13.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開圖的長(zhǎng)方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長(zhǎng)度最短.所以最短路線就是側(cè)面展開圖中長(zhǎng)方形的一條對(duì)角線.如圖所示.14.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°15.下面程序框圖輸出的S表示什么?虛線框表示什么結(jié)構(gòu)?答案:由框圖知,當(dāng)r=5時(shí),輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個(gè)順序結(jié)構(gòu).16.求由曲線圍成的圖形的面積.答案:面積為解析:當(dāng),時(shí),方程化成,即.上式表示圓心在,半徑為的圓.所以,當(dāng),時(shí),方程表示在第一象限的部分以及軸,軸負(fù)半軸上的點(diǎn),.同理,當(dāng),時(shí),方程表示在第四象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第二象限的部分以及軸負(fù)半軸上的點(diǎn);當(dāng),時(shí),方程表示圓在第三象限部分.以上合起來構(gòu)成如圖所示的圖形,面積為.17.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.18.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為______.答案:因?yàn)锳(0,4)和點(diǎn)B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-219.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡(jiǎn)單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡(jiǎn)單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡(jiǎn)單隨機(jī)抽樣法,分層抽樣法故選A20.將程序補(bǔ)充完整
INPUT
x
m=xMOD2
IF______THEN
PRINT“x是偶數(shù)”
ELSE
PRINT“x是奇數(shù)”
END
IF
END.答案:本程序的作用是判斷出輸入的數(shù)是奇數(shù)還是偶數(shù),由其邏輯關(guān)系知,若邏輯是“是”則輸出“x是偶數(shù)”,若邏輯是“否”,則輸出“x是奇數(shù)”故判斷條件應(yīng)為m=0故為m=021.如果一個(gè)圓錐的正視圖是邊長(zhǎng)為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個(gè)圓錐的表面積是12×2π×2+π?12=3π.故:3π.22.函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變動(dòng)時(shí),函數(shù)b=g(a)的圖象可以是()A.
B.
C.
D.
答案:根據(jù)選項(xiàng)可知a≤0a變動(dòng)時(shí),函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],∴2|b|=16,b=4故選B.23.用行列式討論關(guān)于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)24.若拋物線y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.25.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大??;
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長(zhǎng)DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長(zhǎng)建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)26.一個(gè)口袋內(nèi)有5個(gè)白球和3個(gè)黑球,任意取出一個(gè),如果是黑球,則這個(gè)黑球不放回且另外放入一個(gè)白球,這樣繼續(xù)下去,直到取出的球是白球?yàn)橹梗笕〉桨浊蛩璧拇螖?shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925627.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是()
A.有99%的人認(rèn)為該欄目?jī)?yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D28.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測(cè),這種抽樣方法是()
A.簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B29.函數(shù)f(x)=8xx2+2(x>0)()A.當(dāng)x=2時(shí),取得最小值83B.當(dāng)x=2時(shí),取得最大值83C.當(dāng)x=2時(shí),取得最小值22D.當(dāng)x=2時(shí),取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當(dāng)且僅當(dāng)x=2x即x=2時(shí),取得最大值22故選D.30.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長(zhǎng)為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.31.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.32.已知點(diǎn)P是長(zhǎng)方體ABCD-A1B1C1D1底面ABCD內(nèi)一動(dòng)點(diǎn),其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點(diǎn)P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點(diǎn)在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時(shí),截得的圖形是拋物線,故點(diǎn)P在底面的軌跡為拋物線的一部分.故選D.33.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(a>0,b>0)左支上一點(diǎn),且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()
A.
B.
C.
D.答案:D34.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領(lǐng)導(dǎo)是______.
答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領(lǐng)導(dǎo):財(cái)務(wù)部,后勤部和編輯部三個(gè)部門,故后勤部的直接領(lǐng)導(dǎo)是專家辦公室.故為:專家辦公室.35.已知矩陣A將點(diǎn)(1,0)變換為(2,3),且屬于特征值3的一個(gè)特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項(xiàng)式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時(shí),α1=11,λ2=-1時(shí),α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.36.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C37.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時(shí)△<0
B=φA(2)當(dāng)a=-1時(shí)△=0
B={0}A(3)當(dāng)a>-1時(shí)△>0
要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=138.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數(shù)為13,則x2的系數(shù)為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數(shù)為2Cm1=2m,(1+3x)n的展開式中x的系數(shù)為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數(shù)為22Cm2,(1+3x)n的展開式中的x2系數(shù)為32Cn2∴當(dāng)n=1m=5時(shí),x2的系數(shù)為22Cm2+32Cn2=40當(dāng)n=3m=2時(shí),x2的系數(shù)為22Cm2+32Cn2=31故選C.39.已知拋物線和雙曲線都經(jīng)過點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是______.答案:設(shè)拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點(diǎn)為F(1,0)由題意知雙曲線的焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0)∴c=1對(duì)于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.40.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;
(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;
(Ⅲ)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點(diǎn)P(x,y)在直線y=x+1上,則其經(jīng)變換后的點(diǎn)Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點(diǎn)Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線,∵平行坐標(biāo)軸的直線顯然不滿足條件,∴所求直線可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點(diǎn)P(x,y),其經(jīng)變換后得到的點(diǎn)Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時(shí),方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.
…(16分)當(dāng)b=0時(shí),由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點(diǎn)P(-bk,0),其經(jīng)變換后的點(diǎn)Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點(diǎn)P(0,k),其經(jīng)變換后得到的點(diǎn)Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)41.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.42.已知函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號(hào))答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長(zhǎng)分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對(duì)于f3(x),3,3,5可作為一個(gè)三角形的三邊長(zhǎng),但32+32<52,所以不存在三角形以32,32,52為三邊長(zhǎng),故f3(x)不是“保三角形函數(shù)”.故為:①②.43.因?yàn)闃颖臼强傮w的一部分,是由某些個(gè)體所組成的,盡管對(duì)總體具有一定的代表性,但并不等于總體,為什么不把所有個(gè)體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實(shí)反映了實(shí)際情況,但不是統(tǒng)計(jì)的基本思想,其操作性、可行性、人力、物力等方面,都會(huì)有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.44.實(shí)數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個(gè)方格中的內(nèi)容分別為()
A.有理數(shù)、零、整數(shù)
B.有理數(shù)、整數(shù)、零
C.零、有理數(shù)、整數(shù)
D.整數(shù)、有理數(shù)、零
答案:B45.試比較nn+1與(n+1)n(n∈N*)的大?。?/p>
當(dāng)n=1時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=2時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=3時(shí),有nn+1______(n+1)n(填>、=或<);
當(dāng)n=4時(shí),有nn+1______(n+1)n(填>、=或<);
猜想一個(gè)一般性的結(jié)論,并加以證明.答案:當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.46.在樣本的頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)長(zhǎng)方形的面積等于其他十個(gè)小長(zhǎng)方形面積的和的14,且樣本容量是160,則中間一組的頻數(shù)為()A.32B.0.2C.40D.0.25答案:設(shè)間一個(gè)長(zhǎng)方形的面積S則其他十個(gè)小長(zhǎng)方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數(shù)為160×0.2=32故選A47.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).48.若函數(shù)f(x)=x+1的值域?yàn)椋?,3],則函數(shù)f(x)的定義域?yàn)開_____.答案:∵f(x)=x+1的值域?yàn)椋?,3],∴2<x+1≤3∴1<x≤2故為:(1,2]49.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.50.若向量的起點(diǎn)與終點(diǎn)M、A、B、C互不重合且無三點(diǎn)共線,且滿足下列關(guān)系(O為空間任一點(diǎn)),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C第2卷一.綜合題(共50題)1.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會(huì)的干部競(jìng)選.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個(gè)男生、2個(gè)女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.2.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:13.某人從家乘車到單位,途中有3個(gè)交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨(dú)立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B4.若施化肥量x與小麥產(chǎn)量y之間的回歸方程為y=250+4x(單位:kg),當(dāng)施化肥量為50kg時(shí),預(yù)計(jì)小麥產(chǎn)量為______kg.答案:根據(jù)回歸方程為y=250+4x,當(dāng)施化肥量為50kg,即x=50kg時(shí),y=250+4x=250+200=450kg故為:4505.若直線按向量平移得到直線,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數(shù)個(gè)答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無數(shù)多個(gè).6.△ABC中,,若,則m+n=()
A.
B.
C.
D.1答案:B7.已知直線l過點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D8.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為()
A.
B.1
C.1+
D.答案:D9.拋物線頂點(diǎn)在坐標(biāo)原點(diǎn),以y軸為對(duì)稱軸,過焦點(diǎn)且與y軸垂直的弦長(zhǎng)為16,則拋物線方程為______.答案:∵過焦點(diǎn)且與對(duì)稱軸y軸垂直的弦長(zhǎng)等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.10.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數(shù)字作答)答案:由題意知本題是一個(gè)分類計(jì)數(shù)問題,要求至少女生與男生各有一名有兩個(gè)種不同的結(jié)果,即一個(gè)女生兩個(gè)男生和一個(gè)男生兩個(gè)女生,∴共有C31C42+C32C41=30種結(jié)果,故為:3011.已知集合{2x,x+y}={7,4},則整數(shù)x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數(shù),舍去故為:2,512.過點(diǎn)A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=013.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.14.用長(zhǎng)為4、寬為2的矩形做側(cè)面圍成一個(gè)高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長(zhǎng)為4、寬為2的矩形做側(cè)面圍成一個(gè)圓柱,且圓柱高為h=2∴底面圓周由長(zhǎng)為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B15.已知點(diǎn)P(t,t),t∈R,點(diǎn)M是圓x2+(y-1)2=上的動(dòng)點(diǎn),點(diǎn)N是圓(x-2)2+y2=上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是(
)
A.-1
B.
C.2
D.1答案:C16.右圖程序運(yùn)行后輸出的結(jié)果為()
A.3456
B.4567
C.5678
D.6789
答案:A17.某學(xué)校為了解高一男生的百米成績(jī),隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績(jī)的頻率分布直方圖.根據(jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個(gè)小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績(jī)?cè)赱13,14]內(nèi)的頻率為:0.7,因?yàn)楦鶕?jù)該圖可以估計(jì)出全校高一男生中百米成績(jī)?cè)赱13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.18.對(duì)總數(shù)為N的一批零件抽取一個(gè)容量為30的樣本,若每個(gè)零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個(gè)零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.19.設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為56π
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C:x=2cosθy=4sinθ(θ為參數(shù))交A、B兩點(diǎn),求|PA|?|PB|答案:(1)由于過點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為
x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點(diǎn)P(-3,3),傾斜角α=5π6,故直線的參數(shù)方程是x=-3-32ty=3+12t(t是參數(shù)).…(5分)(2)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t1,則點(diǎn)A,B的坐標(biāo)分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數(shù)方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因?yàn)閠1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.20.若k∈R,則“k>3”是“方程表示雙曲線”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:A21.在研究打酣與患心臟病之間的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的.下列說法中正確的是()
A.100個(gè)心臟病患者中至少有99人打酣
B.1個(gè)人患心臟病,則這個(gè)人有99%的概率打酣
C.100個(gè)心臟病患者中一定有打酣的人
D.100個(gè)心臟病患者中可能一個(gè)打酣的人都沒有答案:D22.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長(zhǎng)交AB于G,因?yàn)锳B∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點(diǎn),所以AC=12a+b,又E、F分別是AD,BC的中點(diǎn),M、N在EF上,且EM=MN=NF,所以M為AC的中點(diǎn),所以AM=12AC,所以AM=14a+12b.故為:14a+12b.23.口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球,其中有45個(gè)紅球,從中摸出1個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球從中摸出1個(gè)球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個(gè),又∵有45個(gè)紅球,∴為32個(gè).從中摸出1個(gè)球,摸出黑球的概率為32100=0.32故為0.3224.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點(diǎn),在以A、B、C、D、E、F為端點(diǎn)的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.25.由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長(zhǎng)為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長(zhǎng)x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a226.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點(diǎn),過點(diǎn)M作直線l交拋物線于A、B兩點(diǎn).
(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點(diǎn)依次為N1,N2,N3,…,當(dāng)0<p<1時(shí),求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點(diǎn)坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時(shí),AB中垂線與x軸交點(diǎn)依次為N1,N2,N3,(0<p<1).∴點(diǎn)Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).27.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長(zhǎng)為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.28.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問題的程序框圖;
(2)以下是解決該問題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;29.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C30.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()
A.1或3,2
B.3,2
C.1或3,1或3
D.3,3答案:A31.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時(shí),n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時(shí),等式左邊的項(xiàng)為:1+2+3+4故為:1+2+3+432.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當(dāng)n=1時(shí),左邊=2,右邊=13×1×2×3=2,等式成立;②假設(shè)當(dāng)n=k時(shí),等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當(dāng)n=k+1時(shí),左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時(shí),等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對(duì)任意正整數(shù)都成立.33.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長(zhǎng).答案:直線的參數(shù)方程為
x
=
-3
+
32sy
=
12s
(s
為參數(shù)),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數(shù)方程代入上式,得
s2-63s+
10
=
0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.34.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選?。合扔煤?jiǎn)單隨機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為答案:C35.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).36.某房間有四個(gè)門,甲要各進(jìn)、出這個(gè)房間一次,不同的走法有多少種?()
A.12
B.7
C.16
D.64答案:C37.雙曲線的實(shí)軸長(zhǎng)和焦距分別為()
A.
B.
C.
D.答案:C38.如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B,C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(Ⅰ)證明A,P,O,M四點(diǎn)共圓;
(Ⅱ)求∠OAM+∠APM的大?。鸢福鹤C明:(Ⅰ)連接OP,OM.因?yàn)锳P與⊙O相切于點(diǎn)P,所以O(shè)P⊥AP.因?yàn)镸是⊙O的弦BC的中點(diǎn),所以O(shè)M⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內(nèi)部,可知四邊形M的對(duì)角互補(bǔ),所以A,P,O,M四點(diǎn)共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點(diǎn)共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內(nèi)部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點(diǎn)共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.39.P是△ABC所在平面上的一點(diǎn),且滿足,若△ABC的面積為1,則△PAB的面積為()
A.
B.
C.
D.答案:B40.圓錐曲線G的一個(gè)焦點(diǎn)是F,與之對(duì)應(yīng)的準(zhǔn)線是,過F作直線與G交于A、B兩點(diǎn),以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點(diǎn)F的弦為AB,過A、B分別向相應(yīng)的準(zhǔn)線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準(zhǔn)線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時(shí)r<d,圓M與準(zhǔn)線相離;拋物線的離心率
e=1,此時(shí)r=d,圓M與準(zhǔn)線相切;雙曲線的離心率
e>1,此時(shí)r>d,圓M與準(zhǔn)線相交.故為:橢圓、拋物線、雙曲線.41.已知0<a<1,loga(1-x)<logax則()
A.0<x<1
B.x<
C.0<x<
D.<x<1答案:C42.隋機(jī)變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C43.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點(diǎn)在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C44.已知△ABC,A(-1,0),B(3,0),C(2,1),對(duì)它先作關(guān)于x軸的反射變換,再將所得圖形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°.
(1)分別求兩次變換所對(duì)應(yīng)的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關(guān)于x軸的反射變換M1=100-1,繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°的變換M2=0-110.(4分)(2)∵M(jìn)2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)45.如圖,O是正方形ABCD對(duì)角線的交點(diǎn),四邊形OAED,OCFB都是正方形,在圖中所示的向量中:
(1)與AO相等的向量有
______;
(2)寫出與AO共線的向量有
______;
(3)寫出與AO的模相等的向量有
______;
(4)向量AO與CO是否相等?答
______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,
DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等46.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1547.賦值語句n=n+1的意思是()
A.n等于n+1
B.n+1等于n
C.將n的值賦給n+1
D.將n的值增加1,再賦給n,即n的值增加1答案:D48.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B49.過A(-2,3),B(2,1)兩點(diǎn)的直線的斜率是()
A.
B.
C.-2
D.2答案:B50.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長(zhǎng)設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C第3卷一.綜合題(共50題)1.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點(diǎn)P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)2.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()
A.(2,0)
B.
C.(2,π)
D.答案:D3.設(shè)函數(shù)f(x)的定義域?yàn)镽,如果對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對(duì)任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:324.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:25.設(shè)拋物線C:y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C6.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A7.對(duì)某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:168.設(shè)ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現(xiàn)給出以下結(jié)論,其中你認(rèn)為正確的是______.
①都大于1②都小于1③至少有一個(gè)不大于1④至多有一個(gè)不小于1⑤至少有一個(gè)不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對(duì)于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對(duì);若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對(duì);由于③與①兩結(jié)論互否,故③對(duì)④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個(gè)的比值大于1是可以的,故不對(duì)⑤與②兩結(jié)論互否,故正確綜上③⑤兩結(jié)論正確故為③⑤9.已知點(diǎn)A(1,2),直線l1:x=1+3ty=2-4t(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,則A、B兩點(diǎn)之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點(diǎn)坐標(biāo)為(52,0)所以|AB|=(1-52)2+(2-0)2
=52.故為:5210.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標(biāo)方程;
(II)求直線被圓截得的弦長(zhǎng).答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長(zhǎng)L=2r2-d2=4305(10分)11.若log
23(x-2)≥0,則x的范圍是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].12.不等式x+x3≥0的解集是(
)。答案:{x|x≥0}13.已知在△ABC和點(diǎn)M滿足
MA+MB+MC=0,若存在實(shí)數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點(diǎn)M滿足MA+MB+MC=0,知點(diǎn)M為△ABC的重心,設(shè)點(diǎn)D為底邊BC的中點(diǎn),則AM=23AD=23×
12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:314.如圖,在△OAB中,P為線段AB上的一點(diǎn),,且,則()
A.
B.
C.
D.
答案:A15.求證:定義在實(shí)數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個(gè)公共點(diǎn).答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn)…(2分)設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2.因?yàn)楹瘮?shù)y=f(x)在實(shí)數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(I)求圓C的參數(shù)方程;
(II)設(shè)圓C與直線l交于點(diǎn)A,B,求弦長(zhǎng)|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圓C的直角坐標(biāo)方程為x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圓C的參數(shù)方程為x=5cosθy=5+5sinθ(θ為參數(shù))
…(4分)(Ⅱ)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)設(shè)兩交點(diǎn)A,B所對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)17.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.18.由直角△ABC勾上一點(diǎn)D作弦AB的垂線交弦于E,交股的延長(zhǎng)線于F,交外接圓于G,求證:EG為EA和EB的比例中項(xiàng),又為ED和EF的比例中項(xiàng).
答案:證明:連接GA、GB,則△AGB也是一個(gè)直角三角形,因?yàn)镋G為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項(xiàng),即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項(xiàng).19.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱軸距離的取值范圍為()
A.[0,]
B.[0,]
C.[0,||]
D.[0,||]答案:B20.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,“若x2的觀測(cè)值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個(gè)吸煙的人中,必有99個(gè)人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因?yàn)槲鼰煷鸢福築21.已知,向量與向量的夾角是,則x的值為()
A.±3
B.±
C.±9
D.3答案:D22.函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時(shí)猜想成立.②假設(shè)n=k時(shí)猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時(shí)猜想也成立.對(duì)于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時(shí)命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).23.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(
)
A.-2
B.-1
C.0
D.1答案:B24.在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對(duì)角線AC與BD交于點(diǎn)O,∴AB+AD=AC,又O為AC的中點(diǎn),∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.25.已知一個(gè)幾何體是由上下兩部分構(gòu)成的一個(gè)組合體,其三視圖如圖所示,則這個(gè)組合體的上下兩部分分別是(
)答案:A26.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為727.在空間直角坐標(biāo)系中,在Ox軸上的點(diǎn)P1的坐標(biāo)特點(diǎn)為
______,在Oy軸上的點(diǎn)P2的坐標(biāo)特點(diǎn)為
______,在Oz軸上的點(diǎn)P3的坐標(biāo)特點(diǎn)為
______,在xOy平面上的點(diǎn)P4的坐標(biāo)特點(diǎn)為
______,在yOz平面上的點(diǎn)P5的坐標(biāo)特點(diǎn)為
______,在xOz平面上的點(diǎn)P6的坐標(biāo)特點(diǎn)為
______.答案:由空間坐標(biāo)系的定義知;Ox軸上的點(diǎn)P1的坐標(biāo)特點(diǎn)為(x,0,0),在Oy軸上的點(diǎn)P2的坐標(biāo)特點(diǎn)為(0,y,0),在Oz軸上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例匯編員工管理篇十篇
- 單位管理制度呈現(xiàn)匯編【人事管理】
- 專題二 民主與法治(精講課件)中考道德與法治一輪復(fù)習(xí) 課件
- 【課件】寒假是用來超越的!課件 2024-2025學(xué)年高中上學(xué)期寒假學(xué)習(xí)和生活指導(dǎo)班會(huì)
- 第5單元 走向近代(高頻選擇題50題)(解析版)
- 中北大學(xué)課件電工技術(shù)
- 《皮膚性病學(xué)疥瘡》課件
- 《電子產(chǎn)品技術(shù)文件》課件
- 母親節(jié) 愛的呈現(xiàn)
- 汽車行業(yè)洞察與展望
- 2025年大學(xué)華西醫(yī)院運(yùn)營(yíng)管理部招考聘用3人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年放射科工作計(jì)劃
- 2024年中國(guó)干粉涂料市場(chǎng)調(diào)查研究報(bào)告
- 2024年副班主任工作總結(jié)(3篇)
- 課題申報(bào)書:古滇青銅文化基因圖譜構(gòu)建及活態(tài)深化研究
- 統(tǒng)編版2024-2025學(xué)年第一學(xué)期四年級(jí)語文期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試卷(含答案)
- 2024年城鄉(xiāng)學(xué)校結(jié)對(duì)幫扶工作總結(jié)范例(3篇)
- 房地產(chǎn)法律風(fēng)險(xiǎn)防范手冊(cè)
- 《監(jiān)考人員培訓(xùn)》課件
- 期末綜合測(cè)試卷(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
- 分布式光伏發(fā)電項(xiàng)目計(jì)劃書
評(píng)論
0/150
提交評(píng)論