2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年黑龍江護(hù)理高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.2.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為_(kāi)_____.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.3.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒(méi)有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫(xiě)成“x=1或x=-1”,故選B.4.在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)關(guān)于x軸對(duì)稱(chēng),頂點(diǎn)在原點(diǎn)O,且過(guò)點(diǎn)P(2,4),則該拋物線(xiàn)的方程是______.答案:設(shè)所求拋物線(xiàn)方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x5.一個(gè)類(lèi)似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機(jī)終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()

A.

B.

C.

D.以上均不對(duì)答案:A6.已知隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,),則E(2ξ+4)=()

A.10

B.4

C.3

D.9答案:A7.已知平面上的向量PA、PB滿(mǎn)足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.8.直線(xiàn)上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或9.如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線(xiàn)MN切⊙0于點(diǎn)B,∠MBA=30°,則AB的長(zhǎng)為_(kāi)_____.答案:連BD,則∠MBA=∠ADB=30°,在直角三角形ABD中sin30°=ABAD,∴AB=12×2=1故為:110.設(shè)a∈(0,1)∪(1,+∞),對(duì)任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對(duì)任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線(xiàn)所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線(xiàn)所示的y=logax的圖象對(duì)應(yīng)的底數(shù)a應(yīng)滿(mǎn)足22<a<1.故為:(22,1).11.集合A={一條邊長(zhǎng)為2,一個(gè)角為30°的等腰三角形},其中的元素個(gè)數(shù)為()A.2B.3C.4D.無(wú)數(shù)個(gè)答案:由題意,兩腰為2,底角為30°;兩腰為2,頂角為30°;底邊為2,底角為30°;底邊為2,頂角為30°.∴共4個(gè)元素,故選C.12.一射手對(duì)靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()

A.2.44

B.3.376

C.2.376

D.2.4答案:C13.長(zhǎng)方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為_(kāi)_____.答案:設(shè)長(zhǎng)方體過(guò)同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,∵從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長(zhǎng)方體的體積為15,故為:15.14.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為_(kāi)_____.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).15.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()

A.(1,2)

B.(4,5)

C.(3,10)

D.(10,12)答案:C16.已知O、A、M、B為平面上四點(diǎn),且,則()

A.點(diǎn)M在線(xiàn)段AB上

B.點(diǎn)B在線(xiàn)段AM上

C.點(diǎn)A在線(xiàn)段BM上

D.O、A、M、B四點(diǎn)一定共線(xiàn)答案:B17.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()

A.9

B.3

C.1

D.5答案:B18.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個(gè)是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個(gè)函數(shù)與函數(shù)y=x

(x≥0)有相同圖象時(shí),這兩個(gè)函數(shù)應(yīng)是同一個(gè)函數(shù).A中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個(gè)函數(shù).B中的函數(shù)和函數(shù)y=x

(x≥0)具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù).C中的函數(shù)和函數(shù)y=x

(x≥0)的值域不同,故不是同一個(gè)函數(shù).D中的函數(shù)和函數(shù)y=x

(x≥0)的定義域不同,故不是同一個(gè)函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x

(x≥0)是同一個(gè)函數(shù),具有相同的圖象,故選B.19.在同一平面直角坐標(biāo)系中,直線(xiàn)變成直線(xiàn)的伸縮變換是()A.B.C.D.答案:A解析:解:設(shè)直線(xiàn)上任意一點(diǎn)(x′,y′),變換前的坐標(biāo)為(x,y),則根據(jù)直線(xiàn)變成直線(xiàn)則伸縮變換是,選A20.圓心既在直線(xiàn)x-y=0上,又在直線(xiàn)x+y-4=0上,且經(jīng)過(guò)原點(diǎn)的圓的方程是______.答案:∵圓心既在直線(xiàn)x-y=0上,又在直線(xiàn)x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標(biāo)為(2,2),∵圓經(jīng)過(guò)原點(diǎn),∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.21.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].22.用反證法證明命題“三角形中最多只有一個(gè)內(nèi)角是鈍角”時(shí),則假設(shè)的內(nèi)容是()

A.三角形中有兩個(gè)內(nèi)角是鈍角

B.三角形中有三個(gè)內(nèi)角是鈍角

C.三角形中至少有兩個(gè)內(nèi)角是鈍角

D.三角形中沒(méi)有一個(gè)內(nèi)角是鈍角答案:C23.兩條平行線(xiàn)l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于()

A.

B.

C.

D.答案:C24.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得

3x-2>4

或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).25.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線(xiàn)為C,關(guān)于曲線(xiàn)C有下列命題:

①曲線(xiàn)C是以F1、F2為焦點(diǎn)的橢圓的一部分;

②曲線(xiàn)C關(guān)于x軸、y軸、坐標(biāo)原點(diǎn)O對(duì)稱(chēng);

③若P是上任意一點(diǎn),則PF1+PF2≤10;

④若P是上任意一點(diǎn),則PF1+PF2≥10;

⑤曲線(xiàn)C圍成圖形的面積為30.

其中真命題的序號(hào)是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線(xiàn)段,如圖故①④錯(cuò),②③對(duì)對(duì)于⑤,圖形的面積為3×52×4=30,故⑤對(duì).故為②③⑤26.在調(diào)試某設(shè)備的線(xiàn)路設(shè)計(jì)中,要選一個(gè)電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻值從小到大安排序號(hào),則第1個(gè)試點(diǎn)的電阻的阻值是(

).答案:3.5kΩ27.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.28.與直線(xiàn)3x+4y-3=0平行,并且距離為3的直線(xiàn)方程為_(kāi)_____.答案:設(shè)所求直線(xiàn)上任意一點(diǎn)P(x,y),由題意可得點(diǎn)P到所給直線(xiàn)的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.29.用反證法證明:“a>b”,應(yīng)假設(shè)為()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.a(chǎn)≤b答案:D30.定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱(chēng)x0是f(x)的一個(gè)不動(dòng)點(diǎn)。

已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)g(x)=-x+的圖象上,求b的最小值。

(參考公式:A(x1,y1),B(x2,y2)的中點(diǎn)坐標(biāo)為)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動(dòng)點(diǎn)為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個(gè)不等實(shí)根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對(duì)任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設(shè),則AB中點(diǎn)C的坐標(biāo)為,又AB的中點(diǎn)在直線(xiàn)上,∴,∴,又x1,x2是方程①的兩個(gè)根,∴,∴,,∴,∴當(dāng)時(shí),bmin=-1。</a<1。31.若命題p:2是偶數(shù);命題q:2是5的約數(shù),則下列命題中為真命題的是()A.p∧qB.(¬p)∧(¬q)C.¬pD.p∨q答案:∵2是偶數(shù),∴命題p為真命題∵2不是5的約數(shù),∴命題q為假命題∴p或q為真命題故選D32.某校現(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會(huì)用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()

A.10

B.9

C.8

D.7答案:A33.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運(yùn)行過(guò)程中各變量值變化如下表:是否繼續(xù)循環(huán)

S

K循環(huán)前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最終輸出結(jié)果k=4故為A34.以下程序輸入2,3,4運(yùn)行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C35.(幾何證明選講)如圖,點(diǎn)A、B、C都在⊙O上,過(guò)點(diǎn)C的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,若AB=5,BC=3,CD=6,則線(xiàn)段AC的長(zhǎng)為_(kāi)_____.答案:∵過(guò)點(diǎn)C的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,∴DC是圓的切線(xiàn),DBA是圓的割線(xiàn),根據(jù)切割線(xiàn)定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.536.在空間有三個(gè)向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.37.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}38.橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線(xiàn),經(jīng)橢圓反射后,反射光線(xiàn)經(jīng)過(guò)橢圓的另一焦點(diǎn).一水平放置的橢圓形臺(tái)球盤(pán),F(xiàn)1,F(xiàn)2是其焦點(diǎn),長(zhǎng)軸長(zhǎng)2a,焦距為2c.一靜放在F1點(diǎn)處的小球(半徑忽略不計(jì)),受擊打后沿直線(xiàn)運(yùn)動(dòng)(不與直線(xiàn)F1F2重合),經(jīng)橢圓壁反彈后再回到點(diǎn)F1時(shí),小球經(jīng)過(guò)的路程是()

A.4c

B.4a

C.2(a+c)

D.4(a+c)答案:B39.參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為

______.答案:∵x=cosαy=1+sinα(α為參數(shù))∴x2+(y-1)2=cos2α+sin2α=1.即:參數(shù)方程x=cosαy=1+sinα(α為參數(shù))化成普通方程為:x2+(y-1)2=1.故為:x2+(y-1)2=1.40.已知圓錐的母線(xiàn)長(zhǎng)與底面半徑長(zhǎng)之比為3:1,一個(gè)正方體有四個(gè)頂點(diǎn)在圓錐的底面內(nèi),另外的四個(gè)頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D41.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12

時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.42.在y=2x,y=log2x,y=x2,y=cosx這四個(gè)函數(shù)中,當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立的函數(shù)的個(gè)數(shù)是()A.0B.1C.2D.3答案:當(dāng)0<x1<x2<1時(shí),使f(x1+x22)>f(x1)+f(x2)2恒成立,說(shuō)明函數(shù)一個(gè)遞增的越來(lái)越慢的函數(shù)或者是一個(gè)遞減的越來(lái)越快的函數(shù)或是一個(gè)先遞增得越來(lái)越慢,再遞減得越來(lái)越快的函數(shù)考查四個(gè)函數(shù)y=2x,y=log2x,y=x2,y=cosx中,y=log2x在(0,1)是遞增得越來(lái)越慢型,函數(shù)y=cosx在(0,1)是遞減得越來(lái)越快型,y=2x,y=x2,這兩個(gè)函數(shù)都是遞增得越來(lái)越快型綜上分析知,滿(mǎn)足條件的函數(shù)有兩個(gè)故選C43.從點(diǎn)A(2,-1,7)沿向量=(8,9,-12)的方向取線(xiàn)段長(zhǎng)||=34,則B點(diǎn)坐標(biāo)為()

A.(-9,-7,7)

B.(18,17,-17)

C.(9,7,-7)

D.(-14,-19,31)答案:B44.P為△ABC內(nèi)一點(diǎn),且PA+3PB+7PC=0,則△PAC與△ABC面積的比為_(kāi)_____.答案:(如圖)分別延長(zhǎng)

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點(diǎn)P是三角形

AB1C1

的重心,設(shè)三角形

AB1C1

的面積為

3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31145.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時(shí)y=2x∴2a=2∴a=1當(dāng)a>1時(shí)y=log13x∴2=loga13∴a=19不成立所以a=1故為:146.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.47.對(duì)于空間四點(diǎn)A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點(diǎn)共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點(diǎn)共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點(diǎn)共面,可得A、B、C、D四點(diǎn)有可能在同一條直線(xiàn)上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.48.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D49.在(x+2y)n的展開(kāi)式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).答案:∵在(x+2y)n的展開(kāi)式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,∴Cn525=Cn626,∴n=8,∴二項(xiàng)式共有9項(xiàng),最中間一項(xiàng)的系數(shù)最大即展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)是第5項(xiàng).50.點(diǎn)(2,-2)的極坐標(biāo)為_(kāi)_____.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).第2卷一.綜合題(共50題)1.已知平面上直線(xiàn)l的方向向量=(-,),點(diǎn)O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D2.曲線(xiàn)x=sin2ty=sint(t為參數(shù))的普通方程為_(kāi)_____.答案:因?yàn)榍€(xiàn)x=sin2ty=sint(t為參數(shù))∴sint=y,代入x=sin2t,可得x=y2,其中-1≤y≤1.故為:x=y2,(-1≤y≤1).3.(幾何證明選做題)若A,B,C是⊙O上三點(diǎn),PC切⊙O于點(diǎn)C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為_(kāi)_____.答案:∵PC切⊙O于點(diǎn)C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°4.在空間直角坐標(biāo)系中,點(diǎn)P(2,-4,6)關(guān)于y軸對(duì)稱(chēng)點(diǎn)P′的坐標(biāo)為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標(biāo)系中,點(diǎn)(2,-4,6)關(guān)于y軸對(duì)稱(chēng),∴其對(duì)稱(chēng)點(diǎn)為:(-2,-4,-6),故為:(-2,-4,-6).5.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為_(kāi)_____.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.6.把兩條直線(xiàn)的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰當(dāng)?shù)氖牵ǎ?/p>

①平行

②垂直

③相交

④斜交.

A.①②③④

B.①④②③

C.①③②④

D.②①③④

答案:C7.已知向量=(x,1),=(3,6),且⊥,則實(shí)數(shù)x的值為()

A.

B.-2

C.2

D.-答案:B8.正十邊形的一個(gè)內(nèi)角是多少度?答案:由多邊形內(nèi)角和公式180°(n-2),∴每一個(gè)內(nèi)角的度數(shù)是180°(n-2)n當(dāng)n=10時(shí).得到一個(gè)內(nèi)角為180°(10-2)10=144°9.現(xiàn)有含鹽7%的食鹽水為200g,需將它制成工業(yè)生產(chǎn)上需要的含鹽5%以上且在6%以下(不含5%和6%)的食鹽水,設(shè)需要加入4%的食鹽水xg,則x的取值范圍是(

)。答案:(100,400)10.已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫(xiě)出x'和y'用x、y表示的關(guān)系式;

(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線(xiàn)y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;

(Ⅲ)是否存在這樣的直線(xiàn):它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線(xiàn)上?若存在,試求出所有這些直線(xiàn);若不存在,則說(shuō)明理由.答案:(Ⅰ)由題設(shè),|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關(guān)系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設(shè)點(diǎn)P(x,y)在直線(xiàn)y=x+1上,則其經(jīng)變換后的點(diǎn)Q(x',y')滿(mǎn)足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點(diǎn)Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設(shè)存在這樣的直線(xiàn),∵平行坐標(biāo)軸的直線(xiàn)顯然不滿(mǎn)足條件,∴所求直線(xiàn)可設(shè)為y=kx+b(k≠0),…(12分)[解法一]∵該直線(xiàn)上的任一點(diǎn)P(x,y),其經(jīng)變換后得到的點(diǎn)Q(x+3y,3x-y)仍在該直線(xiàn)上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當(dāng)b≠0時(shí),方程組-(3k+1)=1k-3=k無(wú)解,故這樣的直線(xiàn)不存在.

…(16分)當(dāng)b=0時(shí),由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線(xiàn)存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線(xiàn)上一點(diǎn)P(-bk,0),其經(jīng)變換后的點(diǎn)Q(-bk,-3bk)仍在該直線(xiàn)上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線(xiàn)為y=kx,取直線(xiàn)上一點(diǎn)P(0,k),其經(jīng)變換后得到的點(diǎn)Q(1+3k,3-k)仍在該直線(xiàn)上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線(xiàn)存在,其方程為y=33x或y=-3x,…(18分)11.在平面直角坐標(biāo)系xOy中,若拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F(q,1),則p+q=______.答案:拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)坐標(biāo)為(0,p2),又已知焦點(diǎn)為為F(q,1),∴q=0,p2=1,故p+q=2,故為2.12.已知曲線(xiàn)C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程是:x=22t+1y=22t,求直線(xiàn)l與曲線(xiàn)C相交所成的弦的弦長(zhǎng).答案:曲線(xiàn)C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線(xiàn)l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線(xiàn)C的圓心(2,0)到直線(xiàn)l的距離為12=22所以直線(xiàn)l與曲線(xiàn)C相交所成的弦的弦長(zhǎng)24-12=14.13.設(shè)a=log

132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log

132<0,b=log123

<0并且log

132>log133,log

133>log123所以c>a>b故選D.14.正方體的內(nèi)切球和外接球的半徑之比為

A.:1

B.:2

C.2:

D.:3答案:D15.若集合S={a,b,c}(a、b、c∈R)中三個(gè)元素為邊可構(gòu)成一個(gè)三角形,那么該三角形一定不可能是()

A.銳角三角形

B.直角三角形

C.鈍角三角形

D.等腰三角形答案:D16.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),A是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p17.如圖程序運(yùn)行后輸出的結(jié)果為_(kāi)_____.答案:由題意,列出如下表格s

0

5

9

12

n

5

4

3

2當(dāng)n=12時(shí),不滿(mǎn)足“s<10”,則輸出n的值2故為:218.設(shè)b是a的相反向量,則下列說(shuō)法錯(cuò)誤的是()

A.a(chǎn)與b的長(zhǎng)度必相等

B.a(chǎn)與b的模一定相等

C.a(chǎn)與b一定不相等

D.a(chǎn)是b的相反向量答案:C19.直線(xiàn)y=3的一個(gè)單位法向量是______.答案:直線(xiàn)y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線(xiàn)y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線(xiàn)y=3的一個(gè)單位法向量是(0,1)故為:(0,1)20.圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線(xiàn)長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,母線(xiàn)長(zhǎng)為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A21.拋物線(xiàn)頂點(diǎn)在坐標(biāo)原點(diǎn),以y軸為對(duì)稱(chēng)軸,過(guò)焦點(diǎn)且與y軸垂直的弦長(zhǎng)為16,則拋物線(xiàn)方程為_(kāi)_____.答案:∵過(guò)焦點(diǎn)且與對(duì)稱(chēng)軸y軸垂直的弦長(zhǎng)等于p的2倍.∴所求拋物線(xiàn)方程為x2=±16y.故為:x2=±16y.22.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.23.已知點(diǎn)D是△ABC的邊BC的中點(diǎn),若記AB=a,AC=b,則用a,b表示AD為_(kāi)_____.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對(duì)角線(xiàn)AE、BC交與點(diǎn)D,易知D是△ABC的邊BC的中點(diǎn),且D是AE的中點(diǎn),如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)24.若一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),則有()A.b>0B.b<0C.m>0D.m<0答案:∵一次函數(shù)y=mx+b在(-∞,+∞)上是增函數(shù),∴一次項(xiàng)系數(shù)m>0,故選C.25.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)當(dāng)n=1,2,3,4時(shí),比較f(n)與g(n)的大小.

(2)根據(jù)(1)的結(jié)果猜測(cè)一個(gè)一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.26.下列在曲線(xiàn)上的點(diǎn)是(

A.

B.

C.

D.答案:B27.若直線(xiàn)l過(guò)拋物線(xiàn)y=ax2(a>0)的焦點(diǎn),并且與y軸垂直,若l被拋物線(xiàn)截得的線(xiàn)段長(zhǎng)為4,則a=______.答案:拋物線(xiàn)方程整理得x2=1ay,焦點(diǎn)(0,14a)l被拋物線(xiàn)截得的線(xiàn)段長(zhǎng)即為通徑長(zhǎng)1a,故1a=4,a=14;故為14.28.若lga,lgb是方程2x2-4x+1=0的兩個(gè)根,則的值等于

A.2

B.

C.4

D.答案:A29.在語(yǔ)句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B30.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個(gè)向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B31.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),

(Ⅰ)求證:DM⊥EB;

(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線(xiàn)AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個(gè)法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22?12+02+

02=13,即cosβ=1332.一個(gè)簡(jiǎn)單多面體的面都是三角形,頂點(diǎn)數(shù)V=6,則它的面數(shù)為_(kāi)_____個(gè).答案:∵已知多面體的每個(gè)面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.33.在空間直角坐標(biāo)系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),點(diǎn)Q在直線(xiàn)OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()

A.(,,)

B.(,,)

C.(,,)

D.(,,)答案:C34.(幾何證明選講選做題)已知AD是△ABC的外角∠EAC的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.

(1)求證:FB=FC;

(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=33,求AD的長(zhǎng).答案:(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC;

…2′∵∠EAD=∠FAB=∠FCB∴∠FBC=∠FCB∴FB=FC.…5(2)∵AB是圓的直徑,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=33,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6

…10′35.甲、乙兩人進(jìn)行乒乓球比賽,比賽規(guī)則為“3局2勝”,即以先贏2局者為勝.根據(jù)經(jīng)驗(yàn),每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(

A.0.216

B.0.36

C.0.432

D.0.648答案:D36.正方形ABCD的邊長(zhǎng)為1,=,=,則|+|=(

A.0

B.2

C.

D.2答案:C37.

以下四組向量中,互相平行的有()組.

A.一

B.二

C.三

D.四答案:D38.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒(méi)有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫(xiě)成“x=1或x=-1”,故選B.39.下列圖形中不一定是平面圖形的是(

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B40.已知向量,,若與共線(xiàn),則的值為

A

B

C

D

答案:D解析:,,由,得41.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為042.設(shè)xi,yi

(i=1,2,…,n)是實(shí)數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個(gè)排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.43.如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線(xiàn),l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點(diǎn)分別在l1、l2、l3上,則△ABC的邊長(zhǎng)是()

A.2

B.

C.

D.

答案:D44.為求方程x5-1=0的虛根,可以把原方程變形為(x-1)(x2+ax+1)(x2+bx+1)=0,由此可得原方程的一個(gè)虛根為_(kāi)_____.答案:由題可知(x-1)(x2+ax+1)(x2+bx+1)=(x-1)[x4+(a+b)x3+(2+ab)x2+(a+b)x+1]比較系數(shù)可得a+b=1ab+2=1,∴a=1+52,b=1-52∴原方程的一個(gè)虛根為-1-5±10-25i4,-1+5±10+25i4中的一個(gè)故為:-1-5+10-25i4.45.已知點(diǎn)A(-1,-2),B(2,3),若直線(xiàn)l:x+y-c=0與線(xiàn)段AB有公共點(diǎn),則直線(xiàn)l在y軸上的截距的取值范圍是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A46.已知0<k<4,直線(xiàn)l1:kx-2y-2k+8=0和直線(xiàn)l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則使得這個(gè)四邊形面積最小的k值為_(kāi)_____.答案:如圖所示:直線(xiàn)l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過(guò)定點(diǎn)B(2,4),與y軸的交點(diǎn)C(0,4-k),直線(xiàn)l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過(guò)定點(diǎn)(2,4),與x軸的交點(diǎn)A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時(shí),所求四邊形的面積最小,故為18.47.先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.

(1)求直線(xiàn)ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線(xiàn)段的長(zhǎng),求這三條線(xiàn)段能?chē)傻妊切蔚母怕剩鸢福海?)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵直線(xiàn)ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿(mǎn)足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線(xiàn)ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b,事件總數(shù)為6×6=36.∵三角形的一邊長(zhǎng)為5∴當(dāng)a=1時(shí),b=5,(1,5,5)1種當(dāng)a=2時(shí),b=5,(2,5,5)1種當(dāng)a=3時(shí),b=3,5,(3,3,5),(3,5,5)2種當(dāng)a=4時(shí),b=4,5,(4,4,5),(4,5,5)2種當(dāng)a=5時(shí),b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當(dāng)a=6時(shí),b=5,6,(6,5,5),(6,6,5)2種故滿(mǎn)足條件的不同情況共有14種故三條線(xiàn)段能?chē)刹煌牡妊切蔚母怕蕿?436=718.48.如圖是2010年青年歌手大獎(jiǎng)賽中,七位評(píng)委為甲、乙兩名選手打出的分?jǐn)?shù)的莖葉圖(其中m為數(shù)字0~9中的

一個(gè)),去掉一個(gè)最高分和一個(gè)最低分后,甲、乙兩名選手得分的平均數(shù)分別為a1,a2,則一定有()A.a(chǎn)1>a2B.a(chǎn)2>a1C.a(chǎn)1=a2D.a(chǎn)1,a2的大小與m的值有關(guān)答案:由題意知去掉一個(gè)最高分和一個(gè)最低分以后,兩組數(shù)據(jù)都有五個(gè)數(shù)據(jù),代入數(shù)據(jù)可以求得甲和乙的平均分a1=1+4+5×35+80=84,a2=4×3+6+75+80=85,∴a2>a1故選B49.在平面直角坐標(biāo)系中,雙曲線(xiàn)Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線(xiàn)的方向向量.任取雙曲線(xiàn)Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿(mǎn)足的一個(gè)等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線(xiàn)方向向量,所以雙曲線(xiàn)漸近線(xiàn)方程為y=±12x,又c=5,∴a=2,b=1雙曲線(xiàn)方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡(jiǎn)得4ab=1.故為4ab=1.50.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據(jù)圓心坐標(biāo)(-2,3)到y(tǒng)軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A第3卷一.綜合題(共50題)1.用數(shù)學(xué)歸納法證明“<n+1

(n∈N*)”.第二步證n=k+1時(shí)(n=1已驗(yàn)證,n=k已假設(shè)成立),這樣證明:=<=(k+1)+1,所以當(dāng)n=k+1時(shí),命題正確.此種證法()

A.是正確的

B.歸納假設(shè)寫(xiě)法不正確

C.從k到k+1推理不嚴(yán)密

D.從k到k+1推理過(guò)程未使用歸納假設(shè)答案:D2.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()

A.0.1

B.0.2

C.0.3

D.0.4答案:C3.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線(xiàn)長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B4.一個(gè)單位有職工800人,其中具有高級(jí)職稱(chēng)的160人,具有中級(jí)職稱(chēng)的320人,具有初級(jí)職稱(chēng)的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級(jí)職稱(chēng)的職工為10人,則樣本容量為()

A.10

B.20

C.40

D.50答案:C5.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()

A.

B.2

C.4

D.12答案:B6.設(shè)曲線(xiàn)C的方程是,將C沿x軸,y軸正向分別平移單位長(zhǎng)度后,得到曲線(xiàn)C1.(1)寫(xiě)出曲線(xiàn)C1的方程;(2)證明曲線(xiàn)C與C1關(guān)于點(diǎn)A(,)對(duì)稱(chēng).答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線(xiàn)C1的方程是(2)在曲線(xiàn)C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn),則有,,代入曲線(xiàn)C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線(xiàn)C1上.反過(guò)來(lái),同樣可以證明,在曲線(xiàn)C1上的點(diǎn)關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)在曲線(xiàn)C上,因此,曲線(xiàn)C與C1關(guān)于點(diǎn)A對(duì)稱(chēng).7.直線(xiàn)x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為_(kāi)_____.答案:由函數(shù)定義知當(dāng)函數(shù)在x=1處有定義時(shí),直線(xiàn)x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為1,若函數(shù)在x=1處有無(wú)定義時(shí),直線(xiàn)x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0故線(xiàn)x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0或1故為0或18.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點(diǎn)A,⊙O′的弦AD與⊙O相切于A點(diǎn),則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無(wú)法確定

答案:B9.若則實(shí)數(shù)λ的值是()

A.

B.

C.

D.答案:D10.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x511.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.12.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個(gè)玩具底面點(diǎn)數(shù)不相同},包括以下12個(gè)基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個(gè)玩具底面點(diǎn)數(shù)至少出現(xiàn)一個(gè)2點(diǎn)},則包括以下6個(gè)基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.13.l1,l2,l3是空間三條不同的直線(xiàn),則下列命題正確的是[

]A.l1⊥l2,l2⊥l3l1∥l3

B.l1⊥l2,l2∥l3l1⊥l3

C.l1∥l2∥l3l1,l2,l3共面

D.l1,l2,l3共點(diǎn)l1,l2,l3共面答案:B14.曲線(xiàn)的參數(shù)方程是(t是參數(shù),t≠0),它的普通方程是()

A.(x-1)2(y-1)=1

B.

C.

D.答案:B15.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()

A.小前提錯(cuò)

B.結(jié)論錯(cuò)

C.正確的

D.大前提錯(cuò)答案:C16.若直線(xiàn)l:ax+by=1與圓C:x2+y2=1有兩個(gè)不同交點(diǎn),則點(diǎn)P(a,b)與圓C的位置關(guān)系是(

A.點(diǎn)在圓上

B.點(diǎn)在圓內(nèi)

C.點(diǎn)在圓外

D.不能確定答案:C17.(本小題滿(mǎn)分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿(mǎn)足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱(chēng)這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.

(1)用自然語(yǔ)言寫(xiě)出算法;

(2)畫(huà)出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個(gè)數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個(gè)數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.18.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()

A.

B.

C.5

D.3答案:A19.給出以下變量①吸煙,②性別,③宗教信仰,④?chē)?guó)籍,其中屬于分類(lèi)變量的有______.答案:①因?yàn)槲鼰煵皇欠诸?lèi)變量,是否吸煙才是分類(lèi)變量,其他②③④屬于分類(lèi)變量.故為:②③④.20.如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是()A.i≤5B.i≤4C.i>5D.i>4答案:首先將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù),11111(2)=1×20+1×21+1×22+1×23+1×24=31,由框圖對(duì)累加變量S和循環(huán)變量i的賦值S=1,i=1,i不滿(mǎn)足判斷框中的條件,執(zhí)行S=1+2×S=1+2×1=3,i=1+1=2,i不滿(mǎn)足條件,執(zhí)行S=1+2×3=7,i=2+1=3,i不滿(mǎn)足條件,執(zhí)行S=1+2×7=15,i=3+1=4,i仍不滿(mǎn)足條件,執(zhí)行S=1+2×15=31,此時(shí)31是要輸出的S值,說(shuō)明i不滿(mǎn)足判斷框中的條件,由此可知,判斷框中的條件應(yīng)為i>4.故選D.21.定義直線(xiàn)關(guān)于圓的圓心距單位λ為圓心到直線(xiàn)的距離與圓的半徑之比.若圓C滿(mǎn)足:①與x軸相切于點(diǎn)A(3,0);②直線(xiàn)y=x關(guān)于圓C的圓心距單位λ=2,試寫(xiě)出一個(gè)滿(mǎn)足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線(xiàn)y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿(mǎn)足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=122.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,則x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a?b=x+2+0=0,x=-2.故為:-2.23.從30個(gè)足球中抽取10個(gè)進(jìn)行質(zhì)量檢測(cè),說(shuō)明利用隨機(jī)數(shù)法抽取這個(gè)樣本的步驟及公平性.答案:第一步:首先將30個(gè)足球編號(hào):00,01,02…29,第二步:在隨機(jī)數(shù)表中隨機(jī)的選一個(gè)數(shù)作為開(kāi)始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個(gè)具有10個(gè)數(shù)據(jù)的樣本.其公平性在于:第一隨機(jī)數(shù)表中每一個(gè)位置上出現(xiàn)的哪一個(gè)數(shù)都是等可能的,第二從30個(gè)個(gè)體中抽到那一個(gè)個(gè)體的號(hào)碼也是機(jī)會(huì)均等的,基于以上兩點(diǎn),利用隨機(jī)數(shù)表抽取樣本保證了各個(gè)個(gè)體被抽到的機(jī)會(huì)是等可能的.24.已知矩陣A=12-14,向量a=74.

(1)求矩陣A的特征值λ1、λ2和特征向量α1、α2;

(2)求A5α的值.答案:(1)矩陣A的特征多項(xiàng)式為f(λ)=.λ-1-21λ-4.=λ2-5λ+6,令f(λ)=0,得λ1=2,λ2=3,當(dāng)λ1=2時(shí),得α1=21,當(dāng)λ2=3時(shí),得α2=11.(7分)(2)由α=mα1+nα2得2m+n=7m+n=4,得m=3,n=1.∴A5α=A5(3α1+α2)=3(A5α1)+A5α2=3(λ51α1)+λ52α2=3×2521+3511=435339.(15分)25.已知三角形ABC的頂點(diǎn)坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點(diǎn)。

(1)求AB邊所在的直線(xiàn)方程。

(2)求中線(xiàn)AM的長(zhǎng)。

(3)求點(diǎn)C關(guān)于直線(xiàn)AB對(duì)稱(chēng)點(diǎn)的坐標(biāo)。答案:解:(1)由兩點(diǎn)式得AB邊所在的直線(xiàn)方程為:=即2x-y+3=0(2)由中點(diǎn)坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點(diǎn)關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)為C′(x′,y′)則CC′⊥AB且線(xiàn)段CC′的中點(diǎn)在直線(xiàn)AB上。即解之得x′=

y′=C′點(diǎn)坐標(biāo)為(,)26.一個(gè)長(zhǎng)方體共一頂點(diǎn)的三個(gè)面的面積分別是2、3、6,這個(gè)長(zhǎng)方體的體積是()A.6B.6C.32D.23答案:可設(shè)長(zhǎng)方體同一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個(gè)長(zhǎng)方體的體積是6故為B27.過(guò)點(diǎn)A(3,5)作圓C:(x-2)2+(y-3)2=1的切線(xiàn),則切線(xiàn)的方程為_(kāi)_____.答案:由圓的一般方程可得圓的圓心與半徑分別為:(2,3);1,當(dāng)切線(xiàn)的斜率存在,設(shè)切線(xiàn)的斜率為k,則切線(xiàn)方程為:kx-y-3k+5=0,由點(diǎn)到直線(xiàn)的距離公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切線(xiàn)方程為:3x+4y-29=0;當(dāng)切線(xiàn)的斜率不存在時(shí),直線(xiàn)為:x=3,滿(mǎn)足圓心(2,3)到直線(xiàn)x=3的距離為圓的半徑1,x=3也是切線(xiàn)方程;故為:3x+4y-29=0或x=3.28.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿(mǎn)足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿(mǎn)足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線(xiàn).故為一條射線(xiàn).29.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()

A.

B.

C.2

D.答案:B30.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是()

A.2

B.6

C.4

D.12答案:C31.點(diǎn)(2,0,3)在空間直角坐標(biāo)系中的位置是在()

A.y軸上

B.xOy平面上

C.xOz平面上

D.第一卦限內(nèi)答案:C32.某班有40名學(xué)生,其中有15人是共青團(tuán)員.現(xiàn)將全班分成4個(gè)小組,第一組有學(xué)生10人,共青團(tuán)員4人,從該班任選一個(gè)學(xué)生代表.在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為()A.415B.514C.14D.34答案:由于所有的共青團(tuán)員共有15人,而第一小組有4人是共青團(tuán)員,故在選到的學(xué)生代表是共青團(tuán)員的條件下,他又是第一組學(xué)生的概率為415,故選A.33.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}34.設(shè)函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),則()A.a(chǎn)>12B.a(chǎn)<12C.a(chǎn)≥12D.a(chǎn)≤12答案:∵函數(shù)f(x)=(1-2a)x+b是R上的增函數(shù),∴1-2a>0,∴a<12.故選B.35.過(guò)點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線(xiàn)方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(diǎn)(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(diǎn)(0,2)在圓x2+y2=4上,∴過(guò)點(diǎn)(0,2)且與圓x2+y2=4只有一個(gè)交點(diǎn)的直線(xiàn)方程是0x+2y=4,即y=2.故為:y=2.36.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D37.一個(gè)試驗(yàn)要求的溫度在69℃~90℃之間,用分?jǐn)?shù)法安排試驗(yàn)進(jìn)行優(yōu)選,則第一個(gè)試點(diǎn)安排在(

)。(取整數(shù)值)答案:82°38.設(shè)=(-2,2,5),=(6,-4,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論