2022屆北京市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁(yè)
2022屆北京市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁(yè)
2022屆北京市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁(yè)
2022屆北京市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁(yè)
2022屆北京市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.2.已知α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.4.如圖,將兩個(gè)全等等腰直角三角形拼成一個(gè)平行四邊形,將平行四邊形沿對(duì)角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.5.設(shè)函數(shù)的定義域?yàn)椋}:,的否定是()A., B.,C., D.,6.已知復(fù)數(shù),,則()A. B. C. D.7.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.8.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.9.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.810.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.11.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過(guò)點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.12.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:甲說(shuō):“作品獲得一等獎(jiǎng)”;乙說(shuō):“作品獲得一等獎(jiǎng)”;丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說(shuō):“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是___.14.已知矩形ABCD,AB=4,BC=3,以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的雙曲線的離心率為_(kāi)___________.15.已知x,y>0,且,則x+y的最小值為_(kāi)____.16.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.19.(12分)2019年12月以來(lái),湖北省武漢市持續(xù)開(kāi)展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡(jiǎn)稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問(wèn)題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111(ⅰ)當(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850720.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計(jì)男女合計(jì)已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請(qǐng)說(shuō)明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對(duì)身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問(wèn)卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)21.(12分)據(jù)《人民網(wǎng)》報(bào)道,美國(guó)國(guó)家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國(guó)和印度的行動(dòng)主導(dǎo)了地球變綠.據(jù)統(tǒng)計(jì),中國(guó)新增綠化面積的來(lái)自于植樹(shù)造林,下表是中國(guó)十個(gè)地區(qū)在去年植樹(shù)造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過(guò)的概率;(3)在這十個(gè)地區(qū)中,從退化林修復(fù)面積超過(guò)一萬(wàn)公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過(guò)六萬(wàn)公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.22.(10分)已知數(shù)列滿足:,,且對(duì)任意的都有,(Ⅰ)證明:對(duì)任意,都有;(Ⅱ)證明:對(duì)任意,都有;(Ⅲ)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.2.A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷.解:根據(jù)題意,由于α,β表示兩個(gè)不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個(gè)平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點(diǎn):必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.3.D【解析】

根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.4.C【解析】

利用建系,假設(shè)長(zhǎng)度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C【點(diǎn)睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個(gè)平面,然后利用解三角形知識(shí)求解;(2)建系,利用空間向量,屬基礎(chǔ)題.5.D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋?,是全稱命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.6.B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問(wèn)題是高考數(shù)學(xué)中的??紗?wèn)題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問(wèn)題.7.C【解析】

結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.8.D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫(huà)出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫(huà)出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.9.B【解析】

建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.10.B【解析】

連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.11.C【解析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)?,?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.12.C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.C【解析】

假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說(shuō)對(duì)的人數(shù).【詳解】分別獲獎(jiǎng)的說(shuō)對(duì)人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對(duì)錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對(duì)錯(cuò)丙對(duì)錯(cuò)對(duì)錯(cuò)丁對(duì)錯(cuò)錯(cuò)對(duì)說(shuō)對(duì)人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.14.2【解析】

根據(jù)為焦點(diǎn),得;又求得,從而得到離心率.【詳解】為焦點(diǎn)在雙曲線上,則又本題正確結(jié)果:【點(diǎn)睛】本題考查利用雙曲線的定義求解雙曲線的離心率問(wèn)題,屬于基礎(chǔ)題.15.1【解析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【點(diǎn)睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.16.【解析】

先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】試題分析:(1)取中點(diǎn),連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點(diǎn),連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因?yàn)?,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18.(1)見(jiàn)證明;(2)【解析】

(1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設(shè),利用椎體的體積公式求得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時(shí),四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因?yàn)?,平面平面,平面平面,平面,所以平面,因?yàn)槠矫?,所?因?yàn)?,所以,所以,因?yàn)?,所以平?(2)解:設(shè),則,四面體的體積.,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減.故當(dāng)時(shí),四面體的體積取得最大值.以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,令,得,同理可得平面的一個(gè)法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有面面垂直的性質(zhì),線面垂直的判定,椎體的體積,二面角的求法,在解題的過(guò)程中,注意巧用導(dǎo)數(shù)求解體積的最大值.19.(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護(hù)措施有效【解析】

(1)根據(jù)散點(diǎn)圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過(guò)樣本中心點(diǎn)求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計(jì)算出誤差即可判斷回歸方程可靠;(ⅱ)當(dāng)時(shí),,與真實(shí)值作比較即可判斷有效.【詳解】(1)根據(jù)散點(diǎn)圖可知:適宜作為累計(jì)確診人數(shù)與時(shí)間變量的回歸方程類型;(2)設(shè),則,,,;(3)(?。r(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,所以(2)的回歸方程可靠:(ⅱ)當(dāng)時(shí),,10150遠(yuǎn)大于7111,所以防護(hù)措施有效.【點(diǎn)睛】本題考查了函數(shù)模型的應(yīng)用,在求非線性回歸方程時(shí),現(xiàn)將非線性的化為線性的,考查了誤差的計(jì)算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎(chǔ)題.20.(1)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見(jiàn)解析;(2).【解析】

(1)結(jié)合題意完善列聯(lián)表,計(jì)算出的觀測(cè)值,對(duì)照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補(bǔ)充如下:患心肺疾病不患心肺疾病合計(jì)男女合計(jì).故有的把握認(rèn)為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點(diǎn)睛】本題考查利用獨(dú)立性檢驗(yàn)的基本思想解決實(shí)際問(wèn)題,同時(shí)也考查了利用列舉法求解古典概型的概率問(wèn)題,考查計(jì)算能力,屬于中等題.21.(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海??;(2);(3)分布列見(jiàn)詳解,數(shù)學(xué)期望為【解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論