版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.2.已知正項數(shù)列滿足:,設,當最小時,的值為()A. B. C. D.3.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.已知是虛數(shù)單位,則()A. B. C. D.5.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.6.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.7.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當?shù)耐饨訄A面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.8.設,滿足約束條件,若的最大值為,則的展開式中項的系數(shù)為()A.60 B.80 C.90 D.1209.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或710.已知向量,,則向量與的夾角為()A. B. C. D.11.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.12.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.14.已知一組數(shù)據(jù),1,0,,的方差為10,則________15.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.16.經(jīng)過橢圓中心的直線與橢圓相交于、兩點(點在第一象限),過點作軸的垂線,垂足為點.設直線與橢圓的另一個交點為.則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.18.(12分)已知函數(shù).(1)討論函數(shù)f(x)的極值點的個數(shù);(2)若f(x)有兩個極值點證明.19.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.20.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.21.(12分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2)設數(shù)列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;22.(10分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α1
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.2.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.3.B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4.B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.5.D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.6.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.7.A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.8.B【解析】
畫出可行域和目標函數(shù),根據(jù)平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),,即,故表示直線與截距的倍,根據(jù)圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數(shù)為:.故選:.【點睛】本題考查了線性規(guī)劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.9.C【解析】
根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.10.C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.11.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.12.B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
把繞著進行旋轉,當四點共面時,運用勾股定理即可求得的最小值.【詳解】將以為軸旋轉至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【點睛】本題考查了空間幾何體的翻折,平面內兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.14.7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應用.15.【解析】
由題意可設橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標準方程,解三角形以及解方程組的相關知識.16.【解析】
作出圖形,設點,則、,設點,利用點差法得出,利用斜率公式得出,進而可得出,可得出,由此可求得的值.【詳解】設點,則、,設點,則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點睛】本題考查橢圓中角的余弦值的求解,涉及了點差法與斜率公式的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標系方程,再轉化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.18.(1)見解析(2)見解析【解析】
(1)求得函數(shù)的定義域和導函數(shù),對分成三種情況進行分類討論,判斷出的極值點個數(shù).(2)由(1)知,結合韋達定理求得的關系式,由此化簡的表達式為,通過構造函數(shù)法,結合導數(shù)證得,由此證得成立.【詳解】(1)函數(shù)的定義域為得,(i)當時;,因為時,時,,所以是函數(shù)的一個極小值點;(ii)若時,若,即時,,在是減函數(shù),無極值點.若,即時,有兩根,不妨設當和時,,當時,,是函數(shù)的兩個極值點,綜上所述時,僅有一個極值點;時,無極值點;時,有兩個極值點.(2)由(1)知,當且僅當時,有極小值點和極大值點,且是方程的兩根,,則所以設,則,又,即,所以所以是上的單調減函數(shù),有兩個極值點,則【點睛】本小題主要考查利用導數(shù)研究函數(shù)的極值點,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.19.(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結論;(2)在點建立空間直角坐標系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因為,所以,所以,所以,又,所以平面.因為平面,所以平面平面.(Ⅱ)如圖,以點為原點,分別為軸、軸、軸正方向,建立空間直角坐標系,則.設,則取,則為面法向量.設為面的法向量,則,即,取,則依題意,則.于是.設直線與平面所成角為,則即直線與平面所成角的正弦值為.20.(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.21.(1)(2)當n為偶數(shù)時,;當n為奇數(shù)時,.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學歸納法,先猜想出通項公式,再用數(shù)學歸納
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣工程及其自動化專業(yè)介紹
- 2024連鎖餐飲企業(yè)與食材供應商的供貨合同
- 數(shù)控機床電氣控制第2版習題答案習題答案
- 2024物流與智慧城市建設合作框架協(xié)議3篇
- 2024版精裝修房屋合同模板:權益保障與細節(jié)解析
- 2025年度數(shù)據(jù)中心設備采購及運維服務合同3篇
- 沈陽城市學院《飛機載重與平衡》2023-2024學年第一學期期末試卷
- 陽泉師范高等專科學?!遁啓C化學》2023-2024學年第一學期期末試卷
- 2024庭院房屋產權轉讓合同書樣本3篇
- 內蒙古美術職業(yè)學院《區(qū)域經(jīng)濟學實驗》2023-2024學年第一學期期末試卷
- 豆腐的制作工藝及配方
- DB-T 29-202-2022 天津市建筑基坑工程技術規(guī)程
- 福建省社會體育指導員信息表
- DB51∕T 5060-2013 四川省預拌砂漿生產與應用技術規(guī)程
- 珠心算習題匯總(可以打印版A4)
- 設備潤滑注油周期表.doc
- 醫(yī)用紅外熱像儀
- 有限空間作業(yè)應急預案及現(xiàn)場處置方案
- (完整版)宴會預定單
- 售后服務部績效考核表59929
- 三字經(jīng)完整A4打印
評論
0/150
提交評論